
Binsec/Rel Symbolic Binary Analyzer for Security

Application to Constant-Time & Secret-Erasure

Sébastien Bardin, CEA ListLesly-Ann Daniel, KU Leuven Tamara Rezk, INRIA



Timing and Microarchitectural Attacks

Timing and microarchitectural attacks:   

Execution time & microarchitectural state depends on secret data

First timing attack in 1996 by Paul Kocher: full recovery of RSA encryption key

3 s

9 s

9 s
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Protect software with constant-time programming
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?
?

?

Constant-Time. Execution time / changes to microarchitectural
state must be independent from secret input

Already used in many cryptographic implementations



if secret

then foo() 

else bar()

What can influence execution time/microarchitecture?

secret→

→ secret

Control Flow



Memory Accesses

if secret

then foo() 

else bar()

secret→

→ secret

x = buf[secret]

Cache

Control Flow

What can influence execution time/microarchitecture?



Memory Accesses

if secret

then foo() 

else bar()

secret→

→ secret secret

Cache

Control Flow

x = buf[secret]

What can influence execution time/microarchitecture?



Protect software with constant-time programming
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?
?

?

Constant-Time. Control-flow and memory accesses must be 
independent from secret input

Control-flow
Memory accesses

Control-flow
Memory accesses



Protect software with constant-time programming
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?
?

?

Constant-Time. Control-flow and memory accesses must be 
independent from secret input

Property relating 2 execution traces (2-hypersafety)

Control-flow
Memory accesses

Control-flow
Memory accesses



Constant-time is not easy to implement
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clang-3.0 –O0

Compilers can break constant-time!
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clang-3.0 –O3

Simon, Laurent, David Chisnall, and Ross Anderson. "What you get is what you C: Controlling side effects in mainstream C compilers.“
2018 IEEE European Symposium on Security and Privacy (EuroS&P).



Automated program verification
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Perfect verification tool:
• Reject only insecure programs
• Accept only secure programs
• Always terminate
• Be fully automatic

Not possible:
Non trivial semantic properties 
of programs are undecidable
Rice Theorem (1951)

}

Bug-Finding

Verification

Verification tool



Automated program verification

12

Perfect verification tool:
• Reject only insecure programs
• Accept only secure programs up to a given bound
• Always terminate
• Be fully automatic

Bug-Finding

Bounded-
Verification

Verification tool

Symbolic Execution (SE)



Challenges: SE for constant-time analysis
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Binary-analysis

Property of 2 executions Not necessarily preserved by compilers

Reason explicitly about memory

Does not scale 

RelSE
SE for pairs of traces with sharing



Many verification tools for constant-time but…
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[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017
[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016
[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019
[5] G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017
[6] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017

Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-AI [2] C ✓+ ×

Casym [4] & CT-Verif [3] LLVM ✓+ ×

CacheAudit [5] Binary ✓+ ×

CacheD [6] Binary × ✓ + Full proof

C/LLVM analysis might 
miss constant-time  

violations 



Many verification tools for constant-time but…
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Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-AI [2] C ✓+ ×

Casym [4] & CT-Verif [3] LLVM ✓+ ×

CacheAudit [5] Binary ✓+ ×

CacheD [6] Binary × ✓

Binsec/Rel Binary ✓ ✓

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017
[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016
[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019
[5] G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017
[6] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017

+ Full proof

C/LLVM analysis might 
miss constant-time  

violations 



Contributions

• Optimizations: symbolic execution for constant-time + secret-erasure

• Implementation in an open source tools

• Application to cryptographic primitives
• Violations introduced by compilers from verified llvm code
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https://github.com/binsec/rel

https://github.com/binsec/rel


Background: SE for constant-time
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Symbolic Execution [1,2]
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foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013



Symbolic Execution [1,2]
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foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

p ↦ 𝑝
s ↦ 𝑠

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013



Symbolic Execution [1,2]
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p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}



Symbolic Execution [1,2]
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p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

c = 0

error ret

𝑐 ≠ 0𝑐 = 0

Symbolic store Path predicate

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}



Symbolic Execution [1,2]
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p = 6
s = 8

Can error be reached?

p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

c = 0

error ret

𝑐 ≠ 0𝑐 = 0

SMT-Solver

Symbolic store Path predicate

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}



SE for constant-time via self-composition [1]
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foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

Symbolic Execution

Can c = 0 depend on s?

[1] Barthe G, D'Argenio PR, Rezk T. Secure Information Flow by Self-Composition. Computer Security Foundations Workshop 2004



SE for constant-time via self-composition [1]
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foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Can c = 0 depend on s?

SMT-Solver

p = 6, s = 8
p’ = 6, s’=1

Self-composition: F(𝑝, 𝑠, 𝑝′, 𝑠′)

𝑐 = 𝑝 × 𝑠 − 48

𝑐′ = 𝑝′ × 𝑠′ − 48
𝑝 = 𝑝′ ∧ ∧ c = 0 ≠ 𝑐′ = 0

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

Symbolic Execution

[1] Barthe G, D'Argenio PR, Rezk T. Secure Information Flow by Self-Composition. Computer Security Foundations Workshop 2004



SE for constant-time via self-composition

Limitations

• Whole formula is duplicated

• High number of insecurity queries to the solver

25

F(𝑝, 𝑠, 𝑝′, 𝑠′)

Relational Symbolic Execution to overcome these limitation



Better approach: Relational SE [1,2]
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foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing in SE 👍



Better approach: Relational SE [1,2]
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foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

𝑐 = 𝑝 × 𝑠 − 48

SMT-SolverRelational formula: F(𝑝, 𝑠, 𝑠′)

𝑐′ = 𝑝 × 𝑠′ − 48

p = 6
s = 8   s’=1

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing in SE 👍

∧ c = 0 ≠ 𝑐′ = 0



Better approach: Relational SE [1,2]
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foo(public p, secret s){

c := p – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 − 48 >



Better approach: Relational SE [1,2]
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foo(public p, secret s){

c := p – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 − 48 >

Sharing in SE 👍

Secret tracking 👍
Spared query !



Limitations of RelSE
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Problem:

• Memory = symbolic array < 𝜇 | 𝜇′ >

• Duplicate load operations < 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

• Many loads in binary code 

RelSE is inefficient at binary-level
RelSE cannot efficiently model speculations



Binary-level RelSE
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On-the-fly read-over-write

• Relational expressions in memory
• Builds on read-over-write [1]
• Simplify loads on-the-fly

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018



Binary-level RelSE
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Memory as the history of stores. 

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

< 𝜇 | 𝜇′ >

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018

On-the-fly read-over-write

• Relational expressions in memory
• Builds on read-over-write [1]
• Simplify loads on-the-fly



Binary-level RelSE
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Example. 
load esp-4 returns < 𝑝 > instead of 
< 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

Memory as the history of stores. 

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

< 𝜇 | 𝜇′ >

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018

On-the-fly read-over-write

• Relational expressions in memory
• Builds on read-over-write [1]
• Simplify loads on-the-fly



Dedicated optimizations for constant-time
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Untainting

Use solver response to transform        
< 𝑎 | 𝑎′ > to < 𝑎 >

• Better sharing

• Better secret tracking

Fault-Packing

Pack queries along basic-blocks

• Reduces number of queries

• Useful for constant-time analysis           
(many queries)



https://github.com/binsec/rel

Implementation

35

https://github.com/binsec/rel


Binsec Framework
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X86-32 (64 incoming)
ARMv7/AARCH64/AMD64
RISC-V 32 (64 incoming)

DBA

Binary SMT-Solver

Symbolic execution
Backward-bounded SE
Relational SE
Abstract interpretation
Concrete interpretation

Loader for ELF/PE
Build & simplify formulas
[…]

IR Analysis

Helpers

Boolector
Bitwuzla
z3, cvc4, yices

https://binsec.github.io/

https://binsec.github.io/


Binsec/Rel
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Binary

Initial memory
configuration

• Updates sym. state
• Build path predicate
• Check satisfiability

Exploration module

• Build insecurity queries
• Constant-time
• Secret-erasure

• Ensure unsatisfiability

Insecurity module

Concretize esp, .data, canaries, …
Default = symbolic

1 Only if exhaustive exploration

1

2 Violation + counterexample (concrete input)

2

?

3 No violations but non-exhaustive exploration

3

Easilly specify secrets
using dedicated stubs



Limitations

• Loop & recursion by unrolling

• Bounded enumeration of jump targets

38

Keep in mind: when you concretize something (e.g. input size, initial memory, etc.) 
it might lead to unexplored behavior & missed violations

Bounded-verification

Can miss violations so Binsec/Rel
reports “Unknown”

Implementation

• No dynamic libraries

• No dynamically allocated memory
• No syscall stubs
• No floating-point instructions



https://github.com/binsec/rel_bench

Experimental evaluation

39

https://github.com/binsec/rel_bench


Ablation study: Binsec/Rel vs. vanilla RelSE
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Binsec/Rel 700× faster than RelSE
No timeouts even on large programs (e.g. donna)

Instructions Instructions / sec Time Timeouts

RelSE 349k 6.2 15h47 13

Binsec/Rel 23M 4429 1h26 0

Total on 338 cryptographic samples (secure & insecure)
Timeout set to 1h



Preservation of constant-time by compilers
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[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

Prior manual study on constant-time bugs introduced by compilers [1]

• We automate this study with Binsec/Rel

• We extend this study:

• clang backend passes introduce violations in programs deemed secure by llvm analyzers

• clang use of cmov can introduce secret-dependent memory accesses

• gcc optimizations tend to preserve CT (if-conversion can even make secure non-ct source)

• Depend on multiple factors, hard to predict: compiler-support remains the best option

• 34 functions
• i386 / i686 / ARM architectures
• 6 gcc + 6 clang version

4148 binaries

Total

• 4 optimization level
• impact of -x86-cmov-converter & 

if-conversion



Conclusion
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Conclusion
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https://github.com/binsec/rel

• Dedicated optimizations for RelSE at binary-level
• Sharing between pairs of executions

• Open source tool Binsec/Rel
• Bug-finding & bounded-verification of constant-time at binary-level

• Analysis of crypto libraries at binary-level
• Constant-time llvm may yield vulnerable binary 

https://github.com/binsec/rel


Extensions

• Binsec/Rel for secret erasure
• Framework to check preservation of secret-erasure by compilers

17 scrubbing functions / 10 compilers / 4 opt. level + DSE pass /  total = 1156 binaries

Open source & easy to extend on https://github.com/binsec/rel_bench

• Binsec/Haunted to find Spectre-PHT/STL vulnerabilities

44

https://github.com/binsec/haunted

https://github.com/binsec/rel_bench
https://github.com/binsec/haunted


Future of Binsec/Rel

• Binsec/Rel not really maintained but…

• Binsec team is working on integrating Binsec/Rel in Binsec
• Better (relational) symbolic execution engine
• Better maintenance
• Tutorials

• Any feedback is welcome:
• sebastien.bardin@cea.fr
• frederic.recoules@cea.fr

45

https://binsec.github.io/

mailto:sebastien.bardin@cea.fr
mailto:Frederic.recoules@cea.fr
https://binsec.github.io/


Backup
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Extension: Secret-erasure



Secret-erasure

48



Secret-erasure
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• Crucial for cryptographic code
• Property of 2 executions
• Not always preserved by compilers

gcc –O2
Dead store elimination pass

removes memset call



Generalizing Binary-level RelSE
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• Binary-level RelSE parametric in the leakage model
→ Symbolic leakage predicate instantiated according to leakage model

→ For IF properties restricting to pairs of traces following same path

• New leakage model + property for capturing secret-erasure
→ Leaks value of all store operations that are not  overwritten
→ Forbids secret dependent control-flow

• Adaptation of Binsec/Rel to secret-erasure



Application: Secret-Erasure
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• We analyze 17 scrubbing functions

• 5 versions of clang & 5 versions of gcc

• 4 optimization levels + DSE pass

̶ Dedicated secure scrubbing functions (e.g. memset_s) are secure

̶ Disabling DSE sometimes works but is not always sufficient

̶ Volatile function pointers can introduce additional register spilling 
that might break secret-erasure with gcc -O2 and gcc -O3

Easilly extensible with new compilers and new scrubbing functions

New framework to check secret-erasure

1156 binaries

Total



Haunted RelSE: detect Spectre vulnerabilities

52

Extension: Spectre



Spectre-PHT
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if idx < size {

v = tab[idx]

leak(v)

}

Sequential execution

• Conditional bound check 
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Spectre-PHT

Exploits conditional branch predictor



Spectre-PHT
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if idx < size {

v = tab[idx]

leak(v)

}

Sequential execution

• Conditional bound check 
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Transient Execution

• Conditional is misspeculated
• Out-of-bound array access

→ load secret data in v
• v is leaked to the cache

Spectre-PHT

Exploits conditional branch predictor



Spectre-STL
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Sequential execution

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret,  p and q are public
• where a ≠ b

• leak(v) encodes v to cache



Spectre-STL
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Sequential execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret,  p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

+

+

leak(p)



Spectre-STL
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Sequential execution

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret,  p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

+ +

leak(s)leak(p)

Transient Executions+



Spectre-STL
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leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret,  p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

v = load a

store a s

store a p

store b q

leak(v)

+ + +

leak(s)leak(p) leak(init_mem[a]) 

Sequential execution Transient Executions+



Not easy to write constant-time programs

• Sequence of instructions executed
→ First timing attacks by Paul Kocher, 1996

• Memory accesses
→ Cache attacks, 2005

• Processors optimizations
→ Spectre attacks, 2018

Constant-time verification in the Spectre era

59

We need efficient automated verification tools that take 
into account speculation mechanisms in processors

Human

Compiler

Hardware

Multiple failure points



Modelling speculative semantics
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Litmus tests (328 instrutions):

• Sequential semantics
→ 14 paths

• Speculative semantics (Spectre-STL)
→ 37M paths

Modelling all transient paths explicitly is intractable



No efficient verification tools for Spectre

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM  -

SpecuSym [2] LLVM  -

FASS [3] Binary  -

Spectector [4] Binary  -

Pitchfork [5] Binary  

Legend







Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

LLVM analysis might 

miss violations 

61



No efficient verification tools for Spectre ?

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM  -

SpecuSym [2] LLVM  -

FASS [3] Binary  -

Spectector [4] Binary  -

Pitchfork [5] Binary  

Binsec/Haunted Binary  

Legend







Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
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Symbolic execution with sequential semantics

if c

then foo

else bar
c

foo bar

2 sequential paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐
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Explicit RelSE.

Fork execution into 4 at conditionals:
• 2 sequential branches
• 2 transient branches
On sequential and transient branches:

• Verify no secret can leak.

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo foo bar bar

+ 2 extra transient paths

2 sequential paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

𝜋 ∧ 𝑐𝜋 ∧ ¬𝑐

(e.g. KLEESpectre)Speculation depth 𝛿
of the condition
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Haunted RelSE.

Fork execution into 2 speculative paths:

• speculative = sequential ∨ transient
• Add constraint to invalidate transient

path

→ can spare two paths at conditionals

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo bar

2 speculative paths𝜋

𝜋 ∧ (𝑐 ∨ ¬𝑐) 𝜋 ∧ (𝑐 ∨ ¬𝑐)

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Speculation depth 𝛿
of the condition



store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL
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store a s

store a p

store b q

v = load a

v ↦ p

1 sequential path

where a ≠ b



store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL
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Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

v ↦ p

v ↦ p v ↦ s

+ 3 extra transient paths
1 sequential path

where a ≠ b

Explicit RelSE.

At load instructions: fork execution 
for each load/store interleaving.

→ Path explosion

(e.g. Pitchfork)
v ↦𝛼



store a s

store a p

store b q

v = load a

Haunted RelSE for Spectre-STL
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Spectre-STL. Loads can speculatively bypass prior stores

v ↦ p

v ↦ p v ↦ s

v ↦𝛼

+ 3 extra transient paths
1 sequential path

Redundant case
Can be eliminated with 

read-over-write

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b
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Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

v ↦ ite 𝛽0 then 𝛼 else (ite 𝛽1 then s else p)

1 speculative path

Haunted RelSE.
• Cut redundant cases
• Encode remaining ones in 1 path

• symbolic ite
• free booleans 𝛽0, 𝛽1

𝛽0 = 𝑓𝑎𝑙𝑠𝑒
𝛽1 = 𝑓𝑎𝑙𝑠𝑒

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b
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https://github.com/binsec/haunted

https://github.com/binsec/haunted
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Benchmark.

Litmus tests: Spectre-PHT = Paul Kocher standard, Spectre-STL = new set of litmus tests

Cryptographic primitives: tea, donna, Libsodium secretbox, OpenSSL ssl3-digest-record & mee-cdc-decrypt

Effective on real code?

→ Spectre-PHT & Spectre-STL 

Haunted RelSE vs. Explicit RelSE?

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗

Comparison against KLEESpectre & Pitchfork

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗

Paths:        93M → 42
Coverage: 2k → 17k
Timeouts: 15 → 8
Bugs:         22 → 148

Litmus:
Paths: 1546 → 370
Time: 3h → 15s
Libsodium + OpenSSL:
Coverage: 2273 → 8634
Total: 
Timeouts: 5 → 1

PHT STL

Benchmark



Weakness of index-masking countermeasure
+ Position independent code
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Program vulnerable to Spectre-PHT

if (idx < size) { // size = 256

v = tab[idx]

leak(v)

}
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Index masking countermeasure

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}
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Compiled version with gcc –O0 –m32Index masking countermeasure

• Store + load masked index
• Store may be bypassed with Spectre-STL !

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)
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Compiled version with gcc –O0 –m32Index masking countermeasure

• Store + load masked index
• Store may be bypassed with Spectre-STL !

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)

• Enable optimizations (depends on compiler choices)

• Explicitly put masked index  in a register

Verified mitigations:


