
Binsec/Rel Symbolic Binary Analyzer for Security

Application to Constant-Time & Secret-Erasure

Sébastien Bardin, CEA ListLesly-Ann Daniel, KU Leuven Tamara Rezk, INRIA

Timing and Microarchitectural Attacks

Timing and microarchitectural attacks:

Execution time & microarchitectural state depends on secret data

First timing attack in 1996 by Paul Kocher: full recovery of RSA encryption key

3 s

9 s

9 s

2

Protect software with constant-time programming

3

?
?

?

Constant-Time. Execution time / changes to microarchitectural
state must be independent from secret input

Already used in many cryptographic implementations

if secret

then foo()

else bar()

What can influence execution time/microarchitecture?

secret→

→ secret

Control Flow

Memory Accesses

if secret

then foo()

else bar()

secret→

→ secret

x = buf[secret]

Cache

Control Flow

What can influence execution time/microarchitecture?

Memory Accesses

if secret

then foo()

else bar()

secret→

→ secret secret

Cache

Control Flow

x = buf[secret]

What can influence execution time/microarchitecture?

Protect software with constant-time programming

7

?
?

?

Constant-Time. Control-flow and memory accesses must be
independent from secret input

Control-flow
Memory accesses

Control-flow
Memory accesses

Protect software with constant-time programming

8

?
?

?

Constant-Time. Control-flow and memory accesses must be
independent from secret input

Property relating 2 execution traces (2-hypersafety)

Control-flow
Memory accesses

Control-flow
Memory accesses

Constant-time is not easy to implement

9

clang-3.0 –O0

Compilers can break constant-time!

10

clang-3.0 –O3

Simon, Laurent, David Chisnall, and Ross Anderson. "What you get is what you C: Controlling side effects in mainstream C compilers.“
2018 IEEE European Symposium on Security and Privacy (EuroS&P).

Automated program verification

11

Perfect verification tool:
• Reject only insecure programs
• Accept only secure programs
• Always terminate
• Be fully automatic

Not possible:
Non trivial semantic properties
of programs are undecidable
Rice Theorem (1951)

}

Bug-Finding

Verification

Verification tool

Automated program verification

12

Perfect verification tool:
• Reject only insecure programs
• Accept only secure programs up to a given bound
• Always terminate
• Be fully automatic

Bug-Finding

Bounded-
Verification

Verification tool

Symbolic Execution (SE)

Challenges: SE for constant-time analysis

13

Binary-analysis

Property of 2 executions Not necessarily preserved by compilers

Reason explicitly about memory

Does not scale

RelSE
SE for pairs of traces with sharing

Many verification tools for constant-time but…

14

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017
[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016
[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019
[5] G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017
[6] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017

Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-AI [2] C ✓+ ×

Casym [4] & CT-Verif [3] LLVM ✓+ ×

CacheAudit [5] Binary ✓+ ×

CacheD [6] Binary × ✓ + Full proof

C/LLVM analysis might
miss constant-time

violations

Many verification tools for constant-time but…

15

Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-AI [2] C ✓+ ×

Casym [4] & CT-Verif [3] LLVM ✓+ ×

CacheAudit [5] Binary ✓+ ×

CacheD [6] Binary × ✓

Binsec/Rel Binary ✓ ✓

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017
[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016
[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019
[5] G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017
[6] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017

+ Full proof

C/LLVM analysis might
miss constant-time

violations

Contributions

• Optimizations: symbolic execution for constant-time + secret-erasure

• Implementation in an open source tools

• Application to cryptographic primitives
• Violations introduced by compilers from verified llvm code

16

https://github.com/binsec/rel

https://github.com/binsec/rel

Background: SE for constant-time

17

Symbolic Execution [1,2]

18

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Symbolic Execution [1,2]

19

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

p ↦ 𝑝
s ↦ 𝑠

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Symbolic Execution [1,2]

20

p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

Symbolic store

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Symbolic Execution [1,2]

21

p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

c = 0

error ret

𝑐 ≠ 0𝑐 = 0

Symbolic store Path predicate

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Symbolic Execution [1,2]

22

p = 6
s = 8

Can error be reached?

p ↦ 𝑝
s ↦ 𝑠
c ↦ 𝑝 × 𝑠 - 48

c = 0

error ret

𝑐 ≠ 0𝑐 = 0

SMT-Solver

Symbolic store Path predicate

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976
[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

SE for constant-time via self-composition [1]

23

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

Symbolic Execution

Can c = 0 depend on s?

[1] Barthe G, D'Argenio PR, Rezk T. Secure Information Flow by Self-Composition. Computer Security Foundations Workshop 2004

SE for constant-time via self-composition [1]

24

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Can c = 0 depend on s?

SMT-Solver

p = 6, s = 8
p’ = 6, s’=1

Self-composition: F(𝑝, 𝑠, 𝑝′, 𝑠′)

𝑐 = 𝑝 × 𝑠 − 48

𝑐′ = 𝑝′ × 𝑠′ − 48
𝑝 = 𝑝′ ∧ ∧ c = 0 ≠ 𝑐′ = 0

Formula F(𝑝, 𝑠)

𝑐 = 𝑝 × 𝑠 − 48 ∧ 𝑐 = 0

Symbolic Execution

[1] Barthe G, D'Argenio PR, Rezk T. Secure Information Flow by Self-Composition. Computer Security Foundations Workshop 2004

SE for constant-time via self-composition

Limitations

• Whole formula is duplicated

• High number of insecurity queries to the solver

25

F(𝑝, 𝑠, 𝑝′, 𝑠′)

Relational Symbolic Execution to overcome these limitation

Better approach: Relational SE [1,2]

26

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing in SE 👍

Better approach: Relational SE [1,2]

27

foo(public p, secret s){

c := p * s – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

𝑐 = 𝑝 × 𝑠 − 48

SMT-SolverRelational formula: F(𝑝, 𝑠, 𝑠′)

𝑐′ = 𝑝 × 𝑠′ − 48

p = 6
s = 8 s’=1

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 × 𝑠−48 | 𝑝 × 𝑠′−48 >

Sharing in SE 👍

∧ c = 0 ≠ 𝑐′ = 0

Better approach: Relational SE [1,2]

28

foo(public p, secret s){

c := p – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 − 48 >

Better approach: Relational SE [1,2]

29

foo(public p, secret s){

c := p – 48;

if(c = 0) error();

else return s/c;

}

Symbolic store

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >
c ↦< 𝑝 − 48 >

Sharing in SE 👍

Secret tracking 👍
Spared query !

Limitations of RelSE

30

Problem:

• Memory = symbolic array < 𝜇 | 𝜇′ >

• Duplicate load operations < 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

• Many loads in binary code

RelSE is inefficient at binary-level
RelSE cannot efficiently model speculations

Binary-level RelSE

31

On-the-fly read-over-write

• Relational expressions in memory
• Builds on read-over-write [1]
• Simplify loads on-the-fly

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018

Binary-level RelSE

32

Memory as the history of stores.

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

< 𝜇 | 𝜇′ >

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018

On-the-fly read-over-write

• Relational expressions in memory
• Builds on read-over-write [1]
• Simplify loads on-the-fly

Binary-level RelSE

33

Example.
load esp-4 returns < 𝑝 > instead of
< 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

Memory as the history of stores.

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

< 𝜇 | 𝜇′ >

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018

On-the-fly read-over-write

• Relational expressions in memory
• Builds on read-over-write [1]
• Simplify loads on-the-fly

Dedicated optimizations for constant-time

34

Untainting

Use solver response to transform
< 𝑎 | 𝑎′ > to < 𝑎 >

• Better sharing

• Better secret tracking

Fault-Packing

Pack queries along basic-blocks

• Reduces number of queries

• Useful for constant-time analysis
(many queries)

https://github.com/binsec/rel

Implementation

35

https://github.com/binsec/rel

Binsec Framework

36

X86-32 (64 incoming)
ARMv7/AARCH64/AMD64
RISC-V 32 (64 incoming)

DBA

Binary SMT-Solver

Symbolic execution
Backward-bounded SE
Relational SE
Abstract interpretation
Concrete interpretation

Loader for ELF/PE
Build & simplify formulas
[…]

IR Analysis

Helpers

Boolector
Bitwuzla
z3, cvc4, yices

https://binsec.github.io/

https://binsec.github.io/

Binsec/Rel

37

Binary

Initial memory
configuration

• Updates sym. state
• Build path predicate
• Check satisfiability

Exploration module

• Build insecurity queries
• Constant-time
• Secret-erasure

• Ensure unsatisfiability

Insecurity module

Concretize esp, .data, canaries, …
Default = symbolic

1 Only if exhaustive exploration

1

2 Violation + counterexample (concrete input)

2

?

3 No violations but non-exhaustive exploration

3

Easilly specify secrets
using dedicated stubs

Limitations

• Loop & recursion by unrolling

• Bounded enumeration of jump targets

38

Keep in mind: when you concretize something (e.g. input size, initial memory, etc.)
it might lead to unexplored behavior & missed violations

Bounded-verification

Can miss violations so Binsec/Rel
reports “Unknown”

Implementation

• No dynamic libraries

• No dynamically allocated memory
• No syscall stubs
• No floating-point instructions

https://github.com/binsec/rel_bench

Experimental evaluation

39

https://github.com/binsec/rel_bench

Ablation study: Binsec/Rel vs. vanilla RelSE

40

Binsec/Rel 700× faster than RelSE
No timeouts even on large programs (e.g. donna)

Instructions Instructions / sec Time Timeouts

RelSE 349k 6.2 15h47 13

Binsec/Rel 23M 4429 1h26 0

Total on 338 cryptographic samples (secure & insecure)
Timeout set to 1h

Preservation of constant-time by compilers

41
[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

Prior manual study on constant-time bugs introduced by compilers [1]

• We automate this study with Binsec/Rel

• We extend this study:

• clang backend passes introduce violations in programs deemed secure by llvm analyzers

• clang use of cmov can introduce secret-dependent memory accesses

• gcc optimizations tend to preserve CT (if-conversion can even make secure non-ct source)

• Depend on multiple factors, hard to predict: compiler-support remains the best option

• 34 functions
• i386 / i686 / ARM architectures
• 6 gcc + 6 clang version

4148 binaries

Total

• 4 optimization level
• impact of -x86-cmov-converter &

if-conversion

Conclusion

42

Conclusion

43

https://github.com/binsec/rel

• Dedicated optimizations for RelSE at binary-level
• Sharing between pairs of executions

• Open source tool Binsec/Rel
• Bug-finding & bounded-verification of constant-time at binary-level

• Analysis of crypto libraries at binary-level
• Constant-time llvm may yield vulnerable binary

https://github.com/binsec/rel

Extensions

• Binsec/Rel for secret erasure
• Framework to check preservation of secret-erasure by compilers

17 scrubbing functions / 10 compilers / 4 opt. level + DSE pass / total = 1156 binaries

Open source & easy to extend on https://github.com/binsec/rel_bench

• Binsec/Haunted to find Spectre-PHT/STL vulnerabilities

44

https://github.com/binsec/haunted

https://github.com/binsec/rel_bench
https://github.com/binsec/haunted

Future of Binsec/Rel

• Binsec/Rel not really maintained but…

• Binsec team is working on integrating Binsec/Rel in Binsec
• Better (relational) symbolic execution engine
• Better maintenance
• Tutorials

• Any feedback is welcome:
• sebastien.bardin@cea.fr
• frederic.recoules@cea.fr

45

https://binsec.github.io/

mailto:sebastien.bardin@cea.fr
mailto:Frederic.recoules@cea.fr
https://binsec.github.io/

Backup

46

47

Extension: Secret-erasure

Secret-erasure

48

Secret-erasure

49

• Crucial for cryptographic code
• Property of 2 executions
• Not always preserved by compilers

gcc –O2
Dead store elimination pass

removes memset call

Generalizing Binary-level RelSE

50

• Binary-level RelSE parametric in the leakage model
→ Symbolic leakage predicate instantiated according to leakage model

→ For IF properties restricting to pairs of traces following same path

• New leakage model + property for capturing secret-erasure
→ Leaks value of all store operations that are not overwritten
→ Forbids secret dependent control-flow

• Adaptation of Binsec/Rel to secret-erasure

Application: Secret-Erasure

51

• We analyze 17 scrubbing functions

• 5 versions of clang & 5 versions of gcc

• 4 optimization levels + DSE pass

̶ Dedicated secure scrubbing functions (e.g. memset_s) are secure

̶ Disabling DSE sometimes works but is not always sufficient

̶ Volatile function pointers can introduce additional register spilling
that might break secret-erasure with gcc -O2 and gcc -O3

Easilly extensible with new compilers and new scrubbing functions

New framework to check secret-erasure

1156 binaries

Total

Haunted RelSE: detect Spectre vulnerabilities

52

Extension: Spectre

Spectre-PHT

53

if idx < size {

v = tab[idx]

leak(v)

}

Sequential execution

• Conditional bound check
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Spectre-PHT

Exploits conditional branch predictor

Spectre-PHT

54

if idx < size {

v = tab[idx]

leak(v)

}

Sequential execution

• Conditional bound check
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Transient Execution

• Conditional is misspeculated
• Out-of-bound array access

→ load secret data in v
• v is leaked to the cache

Spectre-PHT

Exploits conditional branch predictor

Spectre-STL

55

Sequential execution

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

Spectre-STL

56

Sequential execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

+

+

leak(p)

Spectre-STL

57

Sequential execution

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

+ +

leak(s)leak(p)

Transient Executions+

Spectre-STL

58

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

v = load a

store a s

store a p

store b q

leak(v)

+ + +

leak(s)leak(p) leak(init_mem[a])

Sequential execution Transient Executions+

Not easy to write constant-time programs

• Sequence of instructions executed
→ First timing attacks by Paul Kocher, 1996

• Memory accesses
→ Cache attacks, 2005

• Processors optimizations
→ Spectre attacks, 2018

Constant-time verification in the Spectre era

59

We need efficient automated verification tools that take
into account speculation mechanisms in processors

Human

Compiler

Hardware

Multiple failure points

Modelling speculative semantics

60

Litmus tests (328 instrutions):

• Sequential semantics
→ 14 paths

• Speculative semantics (Spectre-STL)
→ 37M paths

Modelling all transient paths explicitly is intractable

No efficient verification tools for Spectre

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM -

SpecuSym [2] LLVM -

FASS [3] Binary -

Spectector [4] Binary -

Pitchfork [5] Binary

Legend

Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

LLVM analysis might

miss violations

61

No efficient verification tools for Spectre ?

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM -

SpecuSym [2] LLVM -

FASS [3] Binary -

Spectector [4] Binary -

Pitchfork [5] Binary

Binsec/Haunted Binary

Legend

Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

LLVM analysis might

miss violations

62

Haunted RelSE

63

Explicit RelSE for Spectre PHT

6464

Symbolic execution with sequential semantics

if c

then foo

else bar
c

foo bar

2 sequential paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Explicit RelSE for Spectre PHT

6565

Explicit RelSE.

Fork execution into 4 at conditionals:
• 2 sequential branches
• 2 transient branches
On sequential and transient branches:

• Verify no secret can leak.

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo foo bar bar

+ 2 extra transient paths

2 sequential paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

𝜋 ∧ 𝑐𝜋 ∧ ¬𝑐

(e.g. KLEESpectre)Speculation depth 𝛿
of the condition

Haunted RelSE for Spectre PHT

6666

Haunted RelSE.

Fork execution into 2 speculative paths:

• speculative = sequential ∨ transient
• Add constraint to invalidate transient

path

→ can spare two paths at conditionals

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo bar

2 speculative paths𝜋

𝜋 ∧ (𝑐 ∨ ¬𝑐) 𝜋 ∧ (𝑐 ∨ ¬𝑐)

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Speculation depth 𝛿
of the condition

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

67

store a s

store a p

store b q

v = load a

v ↦ p

1 sequential path

where a ≠ b

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

68

Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

v ↦ p

v ↦ p v ↦ s

+ 3 extra transient paths
1 sequential path

where a ≠ b

Explicit RelSE.

At load instructions: fork execution
for each load/store interleaving.

→ Path explosion

(e.g. Pitchfork)
v ↦𝛼

store a s

store a p

store b q

v = load a

Haunted RelSE for Spectre-STL

69

Spectre-STL. Loads can speculatively bypass prior stores

v ↦ p

v ↦ p v ↦ s

v ↦𝛼

+ 3 extra transient paths
1 sequential path

Redundant case
Can be eliminated with

read-over-write

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

Haunted RelSE for Spectre-STL

70

Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

v ↦ ite 𝛽0 then 𝛼 else (ite 𝛽1 then s else p)

1 speculative path

Haunted RelSE.
• Cut redundant cases
• Encode remaining ones in 1 path

• symbolic ite
• free booleans 𝛽0, 𝛽1

𝛽0 = 𝑓𝑎𝑙𝑠𝑒
𝛽1 = 𝑓𝑎𝑙𝑠𝑒

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

Experimental evaluation

71

https://github.com/binsec/haunted

https://github.com/binsec/haunted

Experimental evaluation

72

Benchmark.

Litmus tests: Spectre-PHT = Paul Kocher standard, Spectre-STL = new set of litmus tests

Cryptographic primitives: tea, donna, Libsodium secretbox, OpenSSL ssl3-digest-record & mee-cdc-decrypt

Effective on real code?

→ Spectre-PHT & Spectre-STL

Haunted RelSE vs. Explicit RelSE?

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗

Comparison against KLEESpectre & Pitchfork

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗

Paths: 93M → 42
Coverage: 2k → 17k
Timeouts: 15 → 8
Bugs: 22 → 148

Litmus:
Paths: 1546 → 370
Time: 3h → 15s
Libsodium + OpenSSL:
Coverage: 2273 → 8634
Total:
Timeouts: 5 → 1

PHT STL

Benchmark

Weakness of index-masking countermeasure
+ Position independent code

73

Weakness of Spectre-PHT countermeasure

74

Program vulnerable to Spectre-PHT

if (idx < size) { // size = 256

v = tab[idx]

leak(v)

}

Weakness of Spectre-PHT countermeasure

75

Index masking countermeasure

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

Weakness of Spectre-PHT countermeasure

76

Compiled version with gcc –O0 –m32Index masking countermeasure

• Store + load masked index
• Store may be bypassed with Spectre-STL !

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)

Weakness of Spectre-PHT countermeasure

77

Compiled version with gcc –O0 –m32Index masking countermeasure

• Store + load masked index
• Store may be bypassed with Spectre-STL !

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)

• Enable optimizations (depends on compiler choices)

• Explicitly put masked index in a register

Verified mitigations:

