01

Binsec/Rel

Binsec/Rel Symbolic Binary Analyzer for Security

Application to Constant-Time & Secret-Erasure

Lesly-Ann Daniel, KU Leuven  Sébastien Bardin, CEA List Tamara Rezk, INRIA



Timing and Microarchitectural Attacks

Timing and microarchitectural attacks:

Execution time & microarchitectural state depends on secret data

First timing attack in 1996 by Paul Kocher: full recovery of RSA encryption key



Protect software with constant-time programming

Constant-Time. Execution time / changes to microarchitectural
state must be independent from secret input

Already used in many cryptographic implementations



What can influence execution time/microarchitecture?

Control Flow

if secret

then foo() (E)
else bar () (E)




What can influence execution time/microarchitecture?

1f secret X = buf|[secret]

L
then foo() O Cache

else bar () (E)




What can influence execution time/microarchitecture?

1f secret X = buf|[secret]

L
then foo() O Cache

else bar () @
5

(ﬂ) L) > sceret secret (




Protect software with constant-time programming

Constant-Time. Control-flow and memory accesses must be
independent from secret input

Control-flow
K ) I ) Memory accesses

—_—

@Iﬁ! Control-flow
Q\ ) )
Memory accesses

—




Protect software with constant-time programming

Constant-Time. Control-flow and memory accesses must be
independent from secret input

Control-flow
K ) I ) Memory accesses

——
) ) Control-flow
% Memory accesses
—

Property relating 2 execution traces (2-hypersafety)



Constant-time is not easy to implement

ulnt32_t select(uint32_t x, uint32_t y, bool secret) {
(secret) X

Y5

uitnt32_t ct select(uint32_t x, uint32_t y, bool secret) {
sighed b = - secret;
(x & b) | (y & ~b);




Compilers can break constant-time!

public ct_select_u32_v4d Uint32—t (u-LntBZ_t XJ u:LntBZ_t y! bOO-L Secret) {
ct_select:usz_vd_prug near S-Lgned b _— - Sec r-e-t;

var_l4= dword ptr -14h

var_D= byte ptr —0Dh (X & b) | (y & Nb);

wvar C= dword ptr —-0Ch

var_ 8= dword ptr -8

arg_0= dword ptr 4

arg_4= dword ptr &
arg_8= byte ptr 0OCh

push esi

sub =;P ' . 1°h+14h+ o] publie ct_seleect_u32_vd

mow al, [esp arg_

mow ecx, [esptldhtarg 4] ct_select_u32_ v4 proc near

mow edx, [esp+ldh+targ_0]

mov [esp+ldh+var B8], edx C | a n _3 O _OO arg_0= byte ptr 4

mow [esp+ldh+var_C], eecx ° arg_4= byte ptr &

and al, 1 8= b och

mowv [esp+ldh+var_D], al arg— y‘tﬁ Pt r

mow al, [esp+ldhtvar_D]

and al, 1 mov al, [esptarg_=g8]

MoVER ecx, al test al, al

mov edx, 0 jz short loc_g804842F

sub edx, ecx

mow [esp+ldh+var_14], edx I I

mov ecx, [esp+ldh+var_8] Cl a n *

and ecx, [espt+ldht+var_14] g—3 O —03

mow edx, [esp+ldh+tvar_C] ° ﬁlﬁ ﬁlﬁ

MO e=si, [esp+1-!h+var_14] lea Seax, ['ﬂﬂ-P+ﬂ.rg_U]

xor esi, OFFFFFFFFh mowv eax, [eax] loc BO4842F:

and esi, edx ' - -

or esi, eecx retn lea eax, [esptarg_4]
mowv eax, esi )] mow eax, [eax]
add esp, 10h retn

pPop esi ct_select_u32_v4 endp
retn

ct_select_u3Z_ w4 endp

Simon, Laurent, David Chisnall, and Ross Anderson. "What you get is what you C: Controlling side effects in mainstream C compilers.”
2018 IEEE European Symposium on Security and Privacy (EuroS&P). 10



Automated program verification

N Y —

Verification

Verification tool

I ,@,

Perfect verification tool:

* Reject only insecure programs
* Accept only secure programs
* Always terminate

* Be fully automatic

Not possible:

Non trivial semantic properties
of programs are undecidable
Rice Theorem (1951)

11



Automated program verification

N Y —

Verification tool

I ,@,

Perfect verification tool:
* Reject only insecure programs /ﬁ I/ 4: 4:
* Accept only secure programs up to a given bound ﬁ ’U

* Always terminate ——— e 3 | N S EC

* Be fully automatic

Bounded-
Verification

Symbolic Execution (SE)

12



Challenges: SE for constant-time analysis

Property of 2 executions Not necessarily preserved by compilers

K))= ;CQ)

RelSE Binary-analysis
SE for pairs of traces with sharing Reason explicitly about memory

Does not scale ®

13



Many verification tools for constant-time but...

Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-Al [2] C VA X

C/LLVM analysis might
Casym [4] & CT-Verif [3] LLVM \/ * X miss constant-time
CacheAudit [5] Binary N4 X violations ©
CacheD [6] Binary X \/ + Rl oroof

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017

[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016

[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019

[5] G. Doychev and B. Kopf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017

[6] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017

14



Many verification tools for constant-time but...

Target Bounded-Verif Bug-Finding

CT-SC [1] & CT-Al [2] C VA X

C/LLVM analysis might
Casym [4] & CT-Verif [3] LLVM \/ t X miss constant-time
CacheAudit [5] Binary N4 X violations ©
CacheD [6] Binary X \/ + Rl oroof
Binsec/Rel Binary v v

[1] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of side-channel countermeasures using self-composition,” in Science of Computer Programming, 2013
[2] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Implementations by Abstract Interpretation,” in ESORICS, 2017

[3] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi, “Verifying Constant-Time Implementations.,” in USENIX, 2016

[4] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “CaSym: Cache aware symbolic execution for side channel detection and mitigation,” in IEEE SP, 2019

[5] G. Doychev and B. Kopf, “Rigorous analysis of software countermeasures against cache attacks,” in PLDI, 2017

[6] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying cache-based timing channels in production software,” in USENIX, 2017

15



Contributions

* Optimizations: symbolic execution for constant-time + secret-erasure

* Implementation in an open source tools

sBinsec/Rel
https://github.com/binsec/rel

* Application to cryptographic primitives
* Violations introduced by compilers from verified llvm code

16


https://github.com/binsec/rel

Background: SE for constant-time



Symbolic Execution [1,2]

foo (public p, secret s) {
cC :=p * s — 48;
if(c = 0) error|():;
else return s/c;

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976

[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013
18



Symbolic Execution [1,2]

foo (public p, secret s) { Symbolic store
cC :=p * s — 48; N
if(c = 0) error(); ) IS p

else return s/c; S = S

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976

[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013
19



Symbolic Execution [1,2]

foo (public p, secret s){ Symbolic store
cC :=p * s — 48; N
if(c = 0) error(); ) IS p

else return s/c; S = S

c »pXs-48

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976

[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013
20



Symbolic Execution [1,2]

foo (public p, secret s) { Symbolic store Path predicate
cC :=p * s — 48;

i1f(c = 0) | error () ) p = p 0
else return s/c; S — S

c P pXs-48 c=0| [c#0

Can error be reached?

Formula F(p, s)
c=pXs —48Ac=0

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976

[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013
21



Symbolic Execution [1,2]

foo (public p, secret s) { Symbolic store Path predicate
cC :=p * s — 48;

if(c = 0)| exrroxr () ; ) p = p 0
else return s/c; S — S

c P pXs-48 c=0| [c#0

error @
SMT-Solver 1

;';)p =6 #(0) Formula F(p, s)
s=38

’ c=pXs —48Ac=0

}

Can error be reached?

[1] James C. King. Symbolic execution and program testing, Communications of the ACM, 1976

[2] Cristian Cadar and Sen Koushik. Symbolic execution for software testing: three decades later. Communications of the ACM, 2013
22



SE for constant-time via self-composition [1]

foo (public p, secret s) { Symbolic Execution
* s — 48;

cC :=p
if (¢ = 0) error():; ) Formula F(p' S)
else return s/c; c=pXs —48Ac=0

}

Can c =0 depend on s?

[1] Barthe G, D'Argenio PR, Rezk T. Secure Information Flow by Self-Composition. Computer Security Foundations Workshop 2004
23



SE for constant-time via self-composition [1]

foo (public p, secret s) { Symbolic Execution

cC :=p * s — 48;
if(c = 0) error(); ) Formula F(p' S)
else return s/c; c=pXs —48Ac=0

}

Can c =0 depend on s?

Self-composition: F(p, s, »’, s") SMT-Solver
7o) P=6,5=8 42
!/ C — p X S - 48 . I ’ ) ’
=p A Ac=0#c =0 © )Y -6, 5'=1
p p c = p/ x s' — 48 . o S

[1] Barthe G, D'Argenio PR, Rezk T. Secure Information Flow by Self-Composition. Computer Security Foundations Workshop 2004 5



SE for constant-time via self-composition

Limitations
» Whole formula is duplicated F(p,s,p’,s’)

* High number of insecurity queries to the solver

Relational Symbolic Execution to overcome these limitation

25



Better approach: Relational SE [1,2]

foo (public p, secret s) { Symbolic store ‘ wrm—" “
c :=p * s — 48; Sharing in SE
-
if(c = 0) error(); ) p <p>’
else return s/c; s P S | S >
} c P<pXs-48|p xs'-48 >

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 -



Better approach: Relational SE [1,2]

foo (public p, secret s) { Symbolic store ‘ A—— N ‘
c :=p * s - 48; Sharing in SE
-
if(c = 0) error(); ) p <p>,
else return s/c; s PP S | S >
} c P<pXs-48|p xs'-48 >
Relational formula: F(p, s, s") SMT-Solver
° p=6 %
c=pxXs —48 , (2 B /
ANc=0%#c =0 s=8 s=1

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017 .



Better approach: Relational SE [1,2]

foo (public p, secret s) {

c := p — 48;

if(c = 0) error();

else return s/c;

Symbolic store
p »P<p>

> s »P<s|s' >
c »P<p-48 >

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

28



Better approach: Relational SE [1,2]

foo (public p, secret s){ Symbolic store
c := p — 48;
-
if(c = 0) error(); ) p <p>’
else return s/c; s IS | S >
; c »P<p-48 >

e

Spared query | Sharing in SE

Secret tracking w

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016

[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017
29



Limitations of RelSE

Problem:
* Memory =symbolicarray < u | ' >
* Duplicate load operations < select u (esp — 4) | select u'(esp — 4) >

* Many loads in binary code ®

RelSE is inefficient at binary-level
RelSE cannot efficiently model speculations

30



Binary-level RelSE

On-the-fly read-over-write

* Relational expressions in memory
e Builds on read-over-write [1]
* Simplify loads on-the-fly

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018

31



Binary-level RelSE

On-the-fly read-over-write

* Relational expressions in memory
e Builds on read-over-write [1]
* Simplify loads on-the-fly

Memory as the history of stores.

<wplu >
v/
esp —4|<p>
N
esp—8|<s|s >

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018

32



Binary-level RelSE

On-the-fly read-over-write Memory as the history of stores.

* Relational expressions in memory ,
 Builds on read-over-write [1] <plw >
* Simplify loads on-the-fly

v/
esp —4|<p>
v/
Example. ,
load esp-4returns < p > instead of esp—8|<s|s >

< select u (esp — 4) | select u'(esp — 4) >

[1] Farinier B, David R, Bardin S, Lemerre M. Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing. LPAR 2018

33



Dedicated optimizations for constant-time

Use solver response to transform Pack queries along basic-blocks
<ala >to<a>

* Reduces number of queries

* Better sharing e Useful for constant-time analysis

* Better secret tracking (many queries)

34



Implementation

s=Binsec/Rel

https://github.com/binsec/rel



https://github.com/binsec/rel

Binsec Framework

t BINSEC

Binary IR Analysis @ SMT-Solver
LDL Symbolic execution
0L0 Backward-bounded SE
@ DBA Relational SE
Boolector
Bitwuzla
X86-32 (64 incoming) Hel 23, cvc4, yices
ARMV7/AARCH64/AMD64 elpers
RISC-V 32 (64 incoming) Loader for ELF/PE

Build & simplify formulas
[...]

https://binsec.github.io/

36


https://binsec.github.io/

Binsec/Rel

Binary

Easilly specify secrets
using dedicated stubs * Updates sym. state
* Build path predicate

- * Check satisfiability
Initial memory

101) s=Binsec/Rel
) ) o

* Build insecurity queries a2
* Constant-time .lk

* Secret-erasure 3

configuration

)

Concretize esp, .data, canaries, ...
Default = symbolic

* Ensure unsatisfiability
1 Only if exhaustive exploration
2 Violation + counterexample (concrete input)

3 No violations but non-exhaustive exploration

37



Limitations

Bounded-verification

* Loop & recursion by unrolling ) Can miss violations so Binsec/Rel
* Bounded enumeration of jump targets reports “Unknown”

Implementation
* No dynamic libraries - No syscall stubs
* No dynamically allocated memory * No floating-point instructions

Keep in mind: when you concretize something (e.g. input size, initial memory, etc.)
it might lead to unexplored behavior & missed violations

38



Experimental evaluation

https://github.com/binsec/rel bench

39


https://github.com/binsec/rel_bench

Ablation study: Binsec/Rel vs. vanilla RelSE

Instructions Instructions / sec Time Timeouts
RelSE 349k 6.2 15h47 13
Binsec/Rel 23M 4429 1h26 0

Total on 338 cryptographic samples (secure & insecure)
Timeout set to 1h

Binsec/Rel 700 faster than RelSE
No timeouts even on large programs (e.g. donna)

40



Preservation of constant-time by compilers

Prior manual study on constant-time bugs introduced by compilers [1]

* We automate this study with Binsec/Rel

* We extend this study: 4148 binaries
e 34 functions * 4 optimization level
« i386/i686 / ARM architectures ® impact of -x86-cmov-converter &
* 6gcc+ 6 clang version if-conversion

clang backend passes introduce violations in programs deemed secure by llvm analyzers

clang use of cmowv can introduce secret-dependent memory accesses
* gcc optimizations tend to preserve CT (1 f-conversion can even make secure non-ct source)
Depend on multiple factors, hard to predict: compiler-support remains the best option &

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
41



Conclusion

42



Conclusion

* Dedicated optimizations for RelSE at binary-level
* Sharing between pairs of executions

* Open source tool Binsec/Rel
* Bug-finding & bounded-verification of constant-time at binary-level

* Analysis of crypto libraries at binary-level B | n SeC/Rel

e Constant-time llvm may yield vulnerable binary
https://github.com/binsec/rel

43


https://github.com/binsec/rel

Extensions

e Binsec/Rel for secret erasure
* Framework to check preservation of secret-erasure by compilers

17 scrubbing functions / 10 compilers / 4 opt. level + DSE pass / total = 1156 binaries
Open source & easy to extend on https://github.com/binsec/rel bench

* Binsec/Haunted to find Spectre-PHT/STL vulnerabilities

.:% Binsec/*)
smaeaHauNte

https://github.com/binsec/haunted

44


https://github.com/binsec/rel_bench
https://github.com/binsec/haunted

Future of Binsec/Rel

* Binsec/Rel not really maintained but...

* Binsec team is working on integrating Binsec/Rel in Binsec
e Better (relational) symbolic execution engine
* Better maintenance
e Tutorials

* Any feedback is welcome: 3 ‘ N S EC

e sebastien.bardin@cea.fr https://binsec.github.io/
e frederic.recoules@cea.fr

45


mailto:sebastien.bardin@cea.fr
mailto:Frederic.recoules@cea.fr
https://binsec.github.io/

Backup



Extension: Secret-erasure



Secret-erasure

void (char * buf, size t size){
memset(buf, 0, size );

}

int () Ao
char secret [SIZE];

read_secret(secret, SIZE);
process_secret(secret, SIZE);
scrub(secret, SIZE);

J

48



Secret-erasure

void (char * buf, size t size){
memset(buf, 0, size );

}

int () Ao
char secret [SIZE];

read_secret(secret, SIZE);
process_secret(secret, SIZE);
scrub(secret, SIZE);

J

gcc—02
Dead store elimination pass
removes memset call

* Crucial for cryptographic code
* Property of 2 executions
* Not always preserved by compilers




Generalizing Binary-level RelSE

* Binary-level RelSE parametric in the leakage model
— Symbolic leakage predicate instantiated according to leakage model
— For IF properties restricting to pairs of traces following same path

P[l] = halt AL (7, 70)
(L, po iy ) ~ (1, p, 12, )

* New leakage model + property for capturing secret-erasure
— Leaks value of all store operations that are not overwritten
— Forbids secret dependent control-flow

* Adaptation of Binsec/Rel to secret-erasure

50



Application: Secret-Erasure

New framework to check secret-erasure

Easilly extensible with new compilers and new scrubbing functions

 We analyze 17 scrubbing functions

* 5versions of clang & 5 versions of gcc )
1156 binaries

* 4 optimization levels + DSE pass

— Dedicated secure scrubbing functions (e.g. memset _s) are secure Q

— Disabling DSE sometimes works but is not always sufficient

— Volatile function pointers can introduce additional register spilling
that might break secret-erasure with gcc -0O2 and gcc -03

51



3

Extension: Spectre

Haunted RelSE: detect Spectre vulnerabilities



Spectre-PHT

Spectre-PHT Sequential execution

Exploits conditional branch predictor o
* Conditional bound check

ensures 1 dx is in bounds
if 1idx < size { * v contains public data

v = tab[1dx]
leak (v)

* 1idxis attacker controlled
e content of tab is public
e leak (v) encodes v to cache

53



Spectre-PHT

Spectre-PHT Sequential execution

Exploits conditional branch predictor o
* Conditional bound check

ensures 1 dx isin bounds
if 1idx < size { * v contains public data
v = tab[i1dx]
leak (v)

Transient Execution

e Conditional is misspeculated

e Qut-of-bound array access
— load secret data in v

* v isleaked to the cache :,%

/4

* 1idxis attacker controlled
e content of tab is public
e leak (v) encodes v to cache

54



Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

Sequential execution

store a s
store a p
store b g
v = load a

leak (v)

leak (p)

 where s is secret, p and g are public
* wherea # b

e Jleak (v) encodes v to cache
55



Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

Sequential execution

store a s
store a p
store b g
v = load a

leak (v)

Transient Executions

leak (p)

e wherea # b

store a s

store a p

v = load a
store b g

leak (v)

leak (p)

where s is secret, p and g are public

leak (v) encodes v to cache

56



Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

Sequential execution

store a s
store a p
store b g
v = load a
leak (V)

leak (p)

e wherea # b

store a s

store a p

v = load a
store b g

leak (v)

Transient Executions

leak (p)

where s is secret, p and g are public

leak (v) encodes v to cache

store a s

v = load a
store a2 p

store b g

leak (v)

leak (s)

W

57



Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

Sequential execution

store a s
store a p
store b g
v = load a

leak (v)

leak (p)

e wherea # b

store a s

store a p

v = load a
store b g

leak (v)

Transient Executions

leak (p)

where s is secret, p and g are public

leak (v) encodes v to cache

store a s

v = load a
store a2 p

store b g

leak (v)

leak (s)

W

store a s
store a p
store b g
leak (V)

v = load a

leak (init memf[al)

58



Constant-time verification in the Spectre era

Not easy to write constant-time programs Multiple failure points

* Sequence of instructions executed

— First timing attacks by Paul Kocher, 1996 m
* Memory accesses >
— Cache attacks, 2005 <&
3 N ik
IR L Comeie

* Processors optimizations
Hardware

— Spectre attacks, 2018

We need efficient automated verification tools that take
into account speculation mechanisms in processors

59



Modelling speculative semantics

Litmus tests (328 instrutions):

* Sequential semantics

5\)

— 14 paths
* Speculative semantics (Spectre-STL)  RL/[' ESGAU“ED QUICKLY
— 37M paths

Modelling all transient paths explicitly is intractable

60



No efficient verification tools for Spectre ®

Target Spectre-PHT Spectre-STL
KLEESpectre [1] LLVM © -
SpecuSym [2] LLVM @ -
FASS [3] Binary ® -
Spectector [4] Binary @ .
Pitchfork [5] Binary @ @

Legend
@ Good perfs. on crypto

@ Good on small programs
Limited perfs. On crypto

@ Limited to small programs

LLVM analysis might
miss violations &

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Kopf, J. F. Morales, J. Reineke, and A. Sdnchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020

[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

61



No efficient verification tools for Spectre ?

Target Spectre-PHT Spectre-STL Legend

KLEESpectre [1] LLVM @ = () Good perfs. on crypto

SpecuSym [2] LLVM @ - @ Good on small programs
Limited perfs. On crypto

FASS [3] Sl @ ) @ Limited to small programs

Spectector [4] Binary @ -

Pitchfork [5] Binary © ® LLVM analysis might

miss violations &
Binsec/Haunted Binary © ®

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.

[4] M. Guarnieri, B. Kopf, J. F. Morales, J. Reineke, and A. Sdnchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020

[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

62



Haunted RelSE



Explicit RelSE for Spectre PHT

Symbolic execution with sequential semantics

it c 2 sequential paths
then foo n
else bar
C
TAC T N-C

64



Explicit RelSE for Spectre PHT

Spectre-PHT. Conditional branches can be executed speculatively

Explicit RelSE.

+ 2 extra transient paths Fork execution into 4 at conditionals:

it c 2 sequential paths
then foo n
else bar
TAC T N-C
TA=C||TTAC

e 2sequential branches

e 2 transient branches

On sequential and transient branches:
e Verify no secret can leak.

Speculation depth & (e.g. KLEESpectre)
of the condition

65



Haunted RelSE for Spectre PHT

Spectre-PHT. Conditional branches can be executed speculatively

£ .
tEc 2 speculative paths
then foo n
else bar

T T

foo bar

TAC

Haunted RelSE.

Fork execution into 2 speculative paths:
e speculative = sequential V transient
 Add constraint to invalidate transient

path

—> can spare two paths at conditionals

Speculation depth 6

T N\ ~cC

/ of the condition

66




Explicit RelSE for Spectre-STL

store a s
store a p
store b g

v = load a

wherea # b

vV =P

1 sequential path

store a s
store a p
store b g

v = load a

67



Explicit RelSE for Spectre-STL

Spectre-STL. Loads can speculatively bypass prior stores

1 sequential path

store a s .
. + 3 extra transient paths
store a p store a s store 4 S
store b g store = F store a p
v = load a . .
v = load a store b g store D 9 EXleClt RE'SE.
- load a
store o s Voo tead At load instructions: fork execution
v = load a store a s . :
for each load/store interleaving.

store a p store a p
store b q Store b g - Path explosion

wherea # b

68

v oD l X— NS (e.g. Pitchfork)
/ AN



Haunted RelSE for Spectre-STL

Spectre-STL. Loads can speculatively bypass prior stores

1 sequential path
+ 3 extra transient paths

store a2 s

store 2 p ctore - o store a s

store a p

store b g store a p

v = load a

v = load a store b g store b 9 Redundant case
pr— — load = Can be eliminated with
o teed ctore - s read-over-write
store a p store a p

store b g store b g

wherea # b

69

Vv PP X- vV iPa
/ AN



Haunted RelSE for Spectre-STL

Spectre-STL. Loads can speculatively bypass prior stores

store a2 s
store a p

store b g

1 speculative path

store = s
store a p

v = load a

v = load a store b g

store a2 s

Haunted RelSE.

e Cut redundant cases

store a p

store b g

* Encode remaining ones in 1 path

store a s
v = load a
store a p

store b g

v = load a
store a s
store a p

store b g

wherea # b

load 2 e symbolic ite

* free booleans (5, 1

v B ite y then « else (ite 1 then s else p)

o = false

1 = false

70




Experimental evaluation

2" Binsec/™)

anann

smmesHauntea

https://github.com/binsec/haunted

71


https://github.com/binsec/haunted

Experimental evaluation

Litmus tests: Spectre-PHT = Paul Kocher standard, Spectre-STL = new set of litmus tests

Cryptographic primitives: tea, donna, Libsodium secretbox, OpenSSL ssI3-digest-record & mee-cdc-decrypt

Effective on real code?

- Spectre-PHT © & Spectre-STL ®

Litmus:

o Paths: 1546 = 370 Paths: 93M - 42
Haunted RelSE vs. Explicit RelSE? Time: 3h = 15s Coverage: 2k > 17k
— Spectre-PHT: =~ or /1 & Spectre-STL: always 7/ Libsodium + OpenSSL: Timeouts: 15 - 8
Coverage: 2273 - 8634 Bugs: 22 - 148
Comparison against KLEESpectre & Pitchfork Total:
- Spectre-PHT: ~ or /1 & Spectre-STL: always 7 Timeouts: 5 > 1

72



Weakness of index-masking countermeasure
+ Position independent code

73



Weakness of Spectre-PHT countermeasure

Program vulnerable to Spectre-PHT

if (idx < size) { // size = 256

v = tab[idx]
leak (v)

74



Weakness of Spectre-PHT countermeasure

Index masking countermeasure

if (idx < size) { // size = 256
1dx = 1dx & (0Oxff)
v = tab[idx]
leak (v)

75



Weakness of Spectre-PHT countermeasure

Index masking countermeasure Compiled version with gcc =00 —m32
if (idx < size) { // size = 256 store (@idx (idx & Oxff)
idx = 1dx & (0xff) eax = load (@idx
v = tab[idx] al = [@dtab + eax]
leak (v) leak (al)
}
e Store + load masked index

e Store may be bypassed with Spectre-STL !

76



Weakness of Spectre-PHT countermeasure

Index masking countermeasure Compiled version with gcc =00 —m32

if (idx < size) { // size = 256 store (@idx (idx & Oxff)
idx = 1dx & (0xff) eax = load (@idx
v = tab[idx] al = [@dtab + eax]
leak (v) leak (al)
¥
e Store + load masked index

e Store may be bypassed with Spectre-STL !

Verified mitigations:
* Enable optimizations (depends on compiler choices)

register ridx asm (

* Explicitly put masked index in a register

77



