UNIVERSITE 285 /.
COTED'AZUR "%~ wua—

Symbolic Binary-Level Code Analysis for Security

Application to the Detection of Microarchitectural Attacks

in Cryptographic Code

TEE talk October, 25th 2021 Supervised by:
Lesly-Ann Daniel - Sébastien Bardin, CEA List

CEA List and Université Cote d’Azur - Tamara Rezk, INRIA



Timing and Microarchitectural Attacks

Timing and microarchitectural attacks:
Execution time / microarchitectural state can leak
secret information manipulated by programs

First timing attack in 1996 by Paul Kocher:
full recovery of RSA encryption key




Protect software with Constant-Time programming

Constant-Time. Execution time / changes to microarchitectural
state are independent from secret input

Already used in many cryptographic implementations



What can influence exec. time/microarchitecture?

Control Flow

if secret

then foo() (ED
else bar () (E)




What can influence exec. time/microarchitecture?

1f secret X = buf|[secret]

L
then foo() O Cache

else bar () (E)




What can influence exec. time/microarchitecture?

1f secret X = buf|[secret]

L
then foo() O Cache

else bar () @
5 2

(ﬂ’) L) > seexes secret




Protect software with Constant-Time programming

Constant-Time. Control-flow and memory accesses are
independent from secret input

Control-flow
K ) I ) Memory accesses

—_—

@Iﬁ! Control-flow
Q\ ) )
Memory accesses

—




Protect software with Constant-Time programming

Constant-Time. Control-flow and memory accesses are
independent from secret input

Control-flow
K ) I ) Memory accesses

——
) ) Control-flow
% Memory accesses
—

Property relating 2 execution traces (2-hypersafety)



CT code is not easy to implement

ulnt32_t select(uint32_t x, uint32_t y, bool secret) {
(secret) X

Y5

uitnt32_t ct select(uint32_t x, uint32_t y, bool secret) {
sighed b = - secret;
(x & b) | (y & ~b);




Compilers can break CT!

uint32 t (uint32_t x, uint32_t y, bool secret) {

public ct_select_u32_wv4d .

ct_select_u3i_ w4 proc near 5 'Lg ned b — — SEC r‘e‘t ;

var_l4= dword ptr -14h .

var_D= byte ptf_: —0Dh ( X & b ) | ( y & Nb ) J

var_C= dword ptr -0Ch

var_8= dword ptr -8

arg_0= dword ptr 4

arg_4= dword ptr &

arg_#8= byte ptr 0OCh

push esi public ct_select_u32_vi4
sub esp, 10h et_select_u32_wv4 proc near
mowv al, [esp+lih+targ_8]

mowv ecx, [esp+ldh+arg 4] —
=SSR e clang-3.0 00 | crgom byre g 4

mowv [esp+ldh+var_8], edx arg_4= byte ptr &

mov [esp+ldh+var_C], ecx arg_8= byte ptr O0OCh

and al, 1

mov [esp+ldh+var D], al fited g al, [esptarg_8&]
mowv al, [esp+lih+tvar_D] test al, al

and al, 1 jz short loc_804842F
MoVIK ecx, al | |

mowv edx, 0O

= B | clang-3.0 -03 [— *

mowv [esp+ldh+var_14], edx b

mow ecx, [esp+ldh+var_8] ﬁﬁ Iﬁ

and ecx, [espt+ldhivar_14] lea eax, [espt+arg 0]

mov edx, [esp+ldhtvar C] mov eax, [eax] loc_B04842F:
mov esi, [esptldh+tvar 14] retn lea eax, [esptarg_4]
Xor esi, OFFFFFFFFh mev eax, [eax]
and esi, edx retn

or esi, ecx

mev eax, esi ct_select_u3Z_vd4 endp
add esp, 10h

j=l=]=] esi

retn

ct_select_u32_v4 endp

10



Goal

Automated verification tools for
constant-time (and more) at binary-level




Automated program verification

N Y —

Verification

Verification tool

I ,@,

Ideally we would like our verification tool to:
* Reject all insecure programs

* Accept all secure programs

* Always terminate

* Be fully automatic

Not possible:

Non trivial semantic properties
of programs are undecidable
Rice Theorem (1951)

12



Automated program verification

N Y —

Verification tool

I ,@,

Bounded-
Verification
Ideally we would like our verification tool to:
* Reject all insecure programs Convenient to have both
* Accept all secure programs up to given bound because binary-level tools
* Always terminate are difficult to use!

* Be fully automatic

13



Bounded Verification & Bug-Finding?

Try Symbolic Execution

Program

LOL

* Leading formal method for bug-finding 01D
@

&
4 BINSEC /)

Symbolic
Execution

e Scales well on binary code
* Finds real bugs + reports counterexamples
* Can also do bounded-verification

The KeY Project Form uIa

14



PA RT 1 41st I[EEE Symposium on

Security and Privacy

Binsec/Rel: . e _

Efficient constant-time verification at binary-level

+ Beyond constant-time (overview)
PART 2 z

Haunted RelSE: detect Spectre vulnerabilities

15



PART 1

Binsec/Rel:
Efficient constant-time verification at binary-level

MAY 18-20, 2020

41st IEEE Symposium on
Security and Privacy

16



Challenges of CT analysis

Property of 2 executions Not necessarily preserved by

X1 compilers N
o &2 B
XX 3
K) ), Compilation

——)

—> Efficiently model pairs of executions = Binary-analysis
Standard SE do not apply Reason explicitly about memory

RelSE Binary-level SE
SE for pairs of traces with sharing s BINSEC

17



Challenges of CT analysis

Property of 2 executions Not necessarily preserved by
% @ﬁ compilers @—. _—
= ) cl > %:l
ﬁtﬁ = K
K ) ), Compilation
—> Efficiently model pairs of executions = Binary-analysis
Standard SE do not apply Reason explicitly about memory
RelSE Binary-level SE
SE for pairs of traces with sharing f BINSEC

Does not scale & (whole memory is duplicated, no sharing)

18



Contributions

0 1

B i N SeC/Rel Q https://github.com/binsec/rel

Efficient Relational Symbolic Execution for Constant-Time at Binary-Level

BINSEC/REL From OpenSSL, BearSSL,
Dedicated optimizations for : . libsodium
_ First efficient tool SUEE
I.ReIOSE at bl-nary—levelz for BV&BE of CT 296 verified binaries
maximize sharing in memory at binary-level 3 new bugs introduced by
(x700 speedup) + formal proofs compilers from verified source
Out of reach of LLVM verification tools

19


https://github.com/binsec/rel

RQ3: Preservation of CT by compilers

Prior manual study on constant-time bugs introduced by compilers [1]

* We automate this study with Binsec/Rel

* We extend this study:

29 new functions & 2 gcc compilers +clangv7.1 & ARM binaries

* gcc—00 can introduce violations in programs

: : * clang backend passes introduce violations in programs
408 binaries deemed secure by CT-verification tools for llvm i

L

e + other fun facts in thesis

/3

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018
20



Beyond Constant-Time



Secret-erasure

void (char * buf, size t size){
memset(buf, 0, size );

}

int () Ao
char secret [SIZE];

read_secret(secret, SIZE);
process_secret(secret, SIZE);
scrub(secret, SIZE);

J

22



Secret-erasure

void (char * buf, size t size){
memset(buf, 0, size );

}

int () Ao
char secret [SIZE];

read_secret(secret, SIZE);
process_secret(secret, SIZE);
scrub(secret, SIZE);

J

gcc—02
Dead store elimination pass
removes memset call

* Crucial for cryptographic code
* Property of 2 executions
* Not always preserved by compilers




Generalizing Binary-level RelSE

* Binary-level RelSE parametric in the leakage model
— Symbolic leakage predicate instantiated according to leakage model
— For IF properties restricting to pairs of traces following same path

P[l] = halt AL (7, 70)
(L, po iy ) ~ (1, p, 12, )

* New leakage model + property for capturing secret-erasure
— Leaks value of all store operations that are not overwritten
— Forbids secret dependent control-flow

* Adaptation of Binsec/Rel to secret-erasure

24



Application: Secret-Erasure

New framework to check secret-erasure

Easilly extensible with new compilers and new scrubbing functions

 We analyze 17 scrubbing functions

* 5versions of clang & 5 versions of gcc )

680 binaries - 1’20

e 4 optimization levels

— Dedicated secure scrubbing functions (e.g. memset _s) are secure 0

(but not always available)

— Volatile function pointers can introduce additional register spilling
that might break secret-erasure with gcc -02 and gcc -03

25



Conclusion

26



Conclusion

O éBinsec/Rel
https://github.com/binsec/rel

* Dedicated optimizations for RelSE at binary-level
— Sharing for scaling

* Binsec/Rel, binary-level tool for analyzing constant-time & secret-erasure
— For bug-finding & bounded-verif

 Verification of crypto primitives at binary-level
— new bugs introduced by compilers out-of reach of LLVM verification

27


https://github.com/binsec/rel

)

PART 2

SYMPOSIUM/2021

Haunted RelSE: detect Spectre vulnerabilities

28



Spectre haunting our code

Spectre attacks (2018)

* Exploit speculative execution in processors

Affect almost all processors

Attackers can force mispeculations: transient executions
Transient executions are reverted at architectural level

But not the microarchitectural state (e.g. cache)

Idea. Force victim to encode secret data in cache during
transient execution & recover them with cache attacks

29



Spectre-PHT

Spectre-PHT Sequential execution

Exploits conditional branch predictor o
* Conditional bound check

ensures 1 dx is in bounds
if 1idx < size { * v contains public data

v = tab[1dx]
leak (v)

* 1idxis attacker controlled
e content of tab is public
e leak (v) encodes v to cache

30



Spectre-PHT

Spectre-PHT Sequential execution

Exploits conditional branch predictor o
* Conditional bound check

ensures 1 dx isin bounds
if 1idx < size { * v contains public data
v = tab[i1dx]
leak (v)

Transient Execution

e Conditional is misspeculated

e Qut-of-bound array access
— load secret data in v

* v isleaked to the cache :,%

/4

* 1idxis attacker controlled
e content of tab is public
e leak (v) encodes v to cache

31



Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

Sequential execution

store a s
store a p
store b g
v = load a

leak (v)

leak (p)

 where s is secret, p and g are public
* wherea # b

e Jleak (v) encodes v to cache
32



Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

Sequential execution

store a s
store a p
store b g
v = load a

leak (v)

Transient Executions

leak (p)

e wherea # b

store a s

store a p

v = load a
store b g

leak (v)

leak (p)

where s is secret, p and g are public

leak (v) encodes v to cache

33



Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

sequential execution

store a s
store a p
store b g
v = load a

leak (v)

leak (p)

e wherea # b

store a s

store a p

v = load a
store b g

leak (v)

Transient Executions

leak (p)

where s is secret, p and g are public

leak (v) encodes v to cache

store a s
v = load a
store a2 p
store b g

leak (v)

leak (s)

W

34



Spectre-STL

Spectre-STL: Loads can speculatively bypass prior stores

sequential execution

store a s
store a p
store b g
v = load a

leak (v)

leak (p)

e wherea # b

store a s

store a p

v = load a
store b g

leak (v)

Transient Executions

leak (p)

where s is secret, p and g are public

leak (v) encodes v to cache

store a s

v = load a
store a2 p

store b g

leak (v)

leak (s)

W

store a s
store a p
store b g
leak (V)

v = load a

leak (init memf[al)

35



Constant-time verification & Spectre attacks

Execution time is not easy to determine Multiple failure points

* Sequence of instructions executed :
* Memory accesses (Cache attacks, 2005) ‘

;
Q IR L Comeie

Not easy to write constant-time programs

We need efficient automated verification tools that take
into account speculation mechanisms in processors.

e Speculation (Spectre attacks, 2018)

Hardware

-

36



Detect Spectre attacks ?

Challenging |

Path explosion for Spectre-STL on Litmus tests (328 instr.)
* Counter-intuitive semantics

Semantics
Sequential semantics
* Path EXp|OS|On: Speculative semantics (Spectre-STL) 37M

* Spectre-STL: all possible My, | 14
i =
load/store interleavings ! i | l\ )
8

* Needs to hold at binary-level

THAT ESCALATED QUICKLY

37



Goal: New verification tools for Spectre

Goal. We need new verification tools to detect Spectre vulnerabilities !

ﬁ
@)ﬁf

— Verify Speculative Constant Time (SCT) property

Proposal.
P — Build on Relational Symbolic Execution (RelSE)

Challenge. Model new transient behaviors avoiding path explosion

38



No efficient verification tools for Spectre ®

Target Spectre-PHT Spectre-STL
KLEESpectre [1] LLVM © -
SpecuSym [2] LLVM @ -
FASS [3] Binary ® -
Spectector [4] Binary @ .
Pitchfork [5] Binary @ @

Legend
@ Good perfs. on crypto

@ Good on small programs
Limited perfs. On crypto

@ Limited to small programs

LLVM analysis might
miss SCT violations @

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Kopf, J. F. Morales, J. Reineke, and A. Sdnchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020

[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

39



No efficient verification tools for Spectre ?

Target Spectre-PHT Spectre-STL Legend

KLEESpectre [1] LLVM @ = () Good perfs. on crypto

SpecuSym [2] LLVM @ - @ Good on small programs
Limited perfs. On crypto

FASS [3] Sl @ ) @ Limited to small programs

Spectector [4] Binary @ -

Pitchfork [5] Binary © ® LLVM analysis might

miss SCT violations &
Binsec/Haunted Binary © ®

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.

[4] M. Guarnieri, B. Kopf, J. F. Morales, J. Reineke, and A. Sdnchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020

[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

40



Contributions

Haunted RelSE optimization
* Model transient and sequential behaviors at the same time
* Formal proof: equivalence with explicit exploration [in the paper]

Binsec/Haunted, binary-level verification tool
e Experimental evaluation on real world crypto (donna, libsodium, OpenSSL)
* Efficient on real-wold crypto for Spectre-PHT © - ©
e Efficient on small programs for Spectre-STL® > ©
* Comparison with SoA: faster & more vulnerabilities found

New Spectre-STL violations
* Index-masking (countermeasure against Spectre-PHT) + proven mitigations
e Code introduced for Position-Independent-Code [in the paper]

41



Haunted RelSE for Spectre-PHT



Background: Symbolic Execution

Symbolic execution. Anillustration.

it c 2 sequential paths
then foo n
else bar
C
TAC T N-C

43



Explicit RelSE for Spectre PHT

Spectre-PHT. Conditional branches can be executed speculatively

if c
then foo

else bar

TAC

J[A

2 sequential paths
+ 2 extra transient paths

T N\ ~cC

TAC

i [AAm

clcte

Explicit RelSE.

Fork execution into 4 at conditionals:

e 2sequential branches

e 2 transient branches (until max
speculation depth)

On sequential and transient branches:
* Verify no secret can leak.

(e.g. KLEESpectre)

44




Haunted RelSE for Spectre PHT

Spectre-PHT. Conditional branches can be executed speculatively

if :
© 2 speculative paths Haunted RelSE.
then foo n
else bar Fork execution into 2 speculative paths:
e speculative = sequential V transient
e After max spec. depth, add constraint
to invalidate transient path
T T .-
—> can spare two paths at conditionals
foo bar

TAN\C < T N\ ~cC

45




Haunted RelSE for Spectre-STL



Explicit RelSE for Spectre-STL

store a s
store a p
store b g

v = load a

wherea # b

vV =P

1 sequential path

store a s
store a p
store b g

v = load a

47



Explicit RelSE for Spectre-STL

Spectre-STL. Loads can speculatively bypass prior stores

1 sequential path

store a s .
. + 3 extra transient paths
store a p store a s store 4 S
store b g store = F store a p
v = load a . .
v = load a store b g store D 9 EXleClt RE'SE.
- load a
store o s Voo tead At load instructions: fork execution
v = load a store a s . :
for each load/store interleaving.

store a p store a p
store b q Store b g - Path explosion

wherea # b

48

v oD l X— NS (e.g. Pitchfork)
/ AN



Explicit RelSE for Spectre-STL

Spectre-STL. Loads can speculatively bypass prior stores

1 sequential path
+ 3 extra transient paths

store a2 s

store = p ctore - o store a s

store a p

store b g store a p

v = load a

v = load a store b g store b 9 Redundant case
pr— — load = Can be eliminated with
o teed ctore - s read-over-write
store a p store a p

store b g store b g

wherea # b

49

V=P X- VP a
/ AN



Explicit RelSE for Spectre-STL

Spectre-STL. Loads can speculatively bypass prior stores

store a2 s
store a p

store b g

1 speculative path

store = s
store a p

v = load a

v = load a store b g

store a2 s

Haunted RelSE.

e Cut redundant cases

store a p

store b g

* Encode remaining ones in 1 path

store a s
v = load a
store a p

store b g

v = load a
store a s
store a p

store b g

wherea # b

load 2 e symbolic ite

* free booleans (5, 1

v B ite y then « else (ite 1 then s else p)

o = false

1 = false

50




Experimental evaluation

Binsec/Haunted.
Implementation of Haunted RelSE

Blnsecé@/
i0 onHaunted

https://github.com/binsec/haunted

Benchmark.
* Litmus tests (46 small test cases)
e Cryptographic primitives tea & donna

* More complex cryptographic primitives
e Libsodium secretbox
e OpenSSL ssI3-digest-record
* OpenSSL mee-cdc-decrypt

Experiments.

RQ1. Effective on real code ?

= Spectre-PHT © & Spectre-STL &

RQ2. Haunted vs. Explicit ?

— Spectre-PHT: =~ or A & Spectre-STL: always /1
RQ3. Comparison against KLEESpectre & Pitchfork
— Spectre-PHT: =~ or /A & Spectre-STL: always /1

51



https://github.com/binsec/haunted

Weakness of index-masking countermeasure

52



Weakness of Spectre-PHT countermeasure

Index masking. Add branchless bound checks

Program vulnerable to Spectre-PHT

if (idx < size) { // size = 256

v = tab[idx]
leak (v)

53



Weakness of Spectre-PHT countermeasure

Index masking. Add branchless bound checks

Index masking countermeasure

if (idx < size) { // size = 256
1dx = idx & (0Oxff)
v = tab[i1dx]
leak (v)

54



Weakness of Spectre-PHT countermeasure

Index masking. Add branchless bound checks

Index masking countermeasure Compiled version with gcc =00 —m32
if (idx < size) { // size = 256 store (@idx (load (@idx & Oxff)
idx = 1dx & (0xff) eax = load @idx
v = tab[idx] al = [@dtab + eax]
leak (V) leak (al)

* Masked index stored in memory
e Store may be bypassed with Spectre-STL !

55



Weakness of Spectre-PHT countermeasure

Index masking. Add branchless bound checks

Index masking countermeasure Compiled version with gcc =00 —m32
if (idx < size) { // size = 256 store (@idx (load (@idx & Oxff)
idx = 1dx & (0xff) eax = load @idx
v = tab[idx] al = [@dtab + eax]
leak (v) leak (al)
}
 Masked index stored in memory

e Store may be bypassed with Spectre-STL !
Verified mitigations:

* Enable optimizations (depends on compiler choices)

 Explicitly put masked index in a register [gAEA<=1s ridx asm (

56



Wrap-up: detection of Spectre

 Haunted RelSE optimization
* Model transient and sequential behaviors at the same time
 Significantly improves SoA methods

* Binsec/Haunted, binary-level verification tool B 1N Sec@/
* Spectre-PHT: efficient on real world crypto © > © i
smssHaunted

e Spectre-STL: efficient on small programs ® > ©

* New Spectre-STL violations with index-masking and PIC

https://github.com/binsec/haunted
https://github.com/binsec/haunted bench

57


https://github.com/binsec/haunted
https://github.com/binsec/haunted_bench

Conclusion

58



Conclusion

#:Binsec/Rel " Binsec/ )
https://github.com/binsec/rel : ﬂ 0 a H a u nted

https://github.com/binsec/haunted

e Dedicated optimizations for RelSE at * Haunted RelSE optimization for
binary-level modeling speculative semantics

* Binsec/Rel, binary-level tool for bug- * Binsec/Haunted, binary-level tool to
finding & bounded-verif. of CT detect Spectre-PHT & STL

» Verif of crypto libraries at binary-level * New Spectre-STL violations with

+ new bugs introduced by compilers index masking and PIC

59


https://github.com/binsec/haunted
https://github.com/binsec/rel

Follow-up 7

Extend framework to check property preservation by compilers

* Analysis of other countermeasures (Ifence, speculative load
hardening)

» Spectre RSB/BTB + analysis of countermeasures

Exploitability
* Less conservative SCT definition: load ebp-4 cannot bypass store ebp-4

e Cache model

60



Backup



Position Independent Code & Spectre-STL

PIC: addess global variables = offset from global pointer

Global pointer: set up at the beginning of a function relatively to current location

call __x86_get_pc_thunk_ax* eax = current location
add eax, Ox9EOQOFA <« eax = global pointer

mov edx, (publicarray_size)[eax]

\

edx = global variable

A

_x86_get_pc_thunk_ax:

mov eax, [esp+0] « |
retn

current location pushed on stack at call

load current location from stack

63



Position Independent Code & Spectre-STL

PIC: addess global variables = offset from global pointer

Global pointer: set up at the beginning of a function relatively to current location

call __x86_get_pc_thunk_ax
add eax, O0x9EOFA <« eax = any value
mov edx, (publicarray_size)[eax]«—

load data from arbitrary @

... leak edx

A

_x86_get_pc_thunk_ax:
mov eax, [esp+O0]
retn

current location pushed on stack at call

\

load bypasses prior store

64



