
Symbolic Binary-Level Code Analysis for Security

Application to the Detection of Microarchitectural Attacks

in Cryptographic Code

Supervised by:

- Sébastien Bardin, CEA List

- Tamara Rezk, INRIA

TEE talk October, 25th 2021

Lesly-Ann Daniel

CEA List and Université Côte d’Azur

Timing and Microarchitectural Attacks

Timing and microarchitectural attacks:
Execution time / microarchitectural state can leak
secret information manipulated by programs

First timing attack in 1996 by Paul Kocher:
full recovery of RSA encryption key

3 s

9 s
9 s

2

Protect software with Constant-Time programming

3

?
?

?

Constant-Time. Execution time / changes to microarchitectural
state are independent from secret input

Already used in many cryptographic implementations

if secret

then foo()

else bar()

What can influence exec. time/microarchitecture?

secret→

→ secret

Control Flow

Memory Accesses

if secret

then foo()

else bar()

What can influence exec. time/microarchitecture?

secret→

→ secret

x = buf[secret]

Cache

Control Flow

Memory Accesses

if secret

then foo()

else bar()

What can influence exec. time/microarchitecture?

secret→

→ secret secret

Cache

Control Flow

x = buf[secret]

Protect software with Constant-Time programming

7

?
?

?

Constant-Time. Control-flow and memory accesses are
independent from secret input

Control-flow
Memory accesses

Control-flow
Memory accesses

Protect software with Constant-Time programming

8

?
?

?

Constant-Time. Control-flow and memory accesses are
independent from secret input

Property relating 2 execution traces (2-hypersafety)

Control-flow
Memory accesses

Control-flow
Memory accesses

CT code is not easy to implement

9

clang-3.0 –O0

Compilers can break CT!

10

clang-3.0 –O3

Automated verification tools for
constant-time (and more) at binary-level

11

Goal

Automated program verification

12

Ideally we would like our verification tool to:
• Reject all insecure programs
• Accept all secure programs
• Always terminate
• Be fully automatic

Not possible:
Non trivial semantic properties
of programs are undecidable
Rice Theorem (1951)

}

Bug-Finding

Verification

Verification tool

Automated program verification

13

Ideally we would like our verification tool to:
• Reject all insecure programs
• Accept all secure programs up to given bound
• Always terminate
• Be fully automatic

Bug-Finding

Bounded-
Verification

Verification tool

Convenient to have both
because binary-level tools

are difficult to use!

Bounded Verification & Bug-Finding?
Try Symbolic Execution

• Leading formal method for bug-finding

• Scales well on binary code

• Finds real bugs + reports counterexamples

• Can also do bounded-verification

14

Program

Symbolic
Execution

Formula

Solver

15

Binsec/Rel:
Efficient constant-time verification at binary-level

+ Beyond constant-time (overview)

PART 1

Haunted RelSE: detect Spectre vulnerabilities

PART 2

Binsec/Rel:
Efficient constant-time verification at binary-level

16

PART 1

Challenges of CT analysis

17

→ Efficiently model pairs of executions → Binary-analysis

Compilation

Property of 2 executions Not necessarily preserved by
compilers

Reason explicitly about memoryStandard SE do not apply

Binary-level SERelSE
SE for pairs of traces with sharing

Challenges of CT analysis

18

→ Efficiently model pairs of executions → Binary-analysis

Compilation

Property of 2 executions Not necessarily preserved by
compilers

Reason explicitly about memoryStandard SE do not apply

Does not scale  (whole memory is duplicated, no sharing)

RelSE
SE for pairs of traces with sharing

Binary-level SE

Contributions

19

BINSEC/REL

First efficient tool
for BV&BF of CT
at binary-level

+ formal proofs

New Tool

Dedicated optimizations for
RelSE at binary-level:

maximize sharing in memory
(x700 speedup)

Optimizations

From OpenSSL, BearSSL,
libsodium

296 verified binaries
3 new bugs introduced by

compilers from verified source
Out of reach of LLVM verification tools

Application: crypto verif.

Efficient Relational Symbolic Execution for Constant-Time at Binary-Level

https://github.com/binsec/rel

https://github.com/binsec/rel

RQ3: Preservation of CT by compilers

20
[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

Prior manual study on constant-time bugs introduced by compilers [1]

• We automate this study with Binsec/Rel

• We extend this study:

• gcc –O0 can introduce violations in programs

• clang backend passes introduce violations in programs
deemed secure by CT-verification tools for llvm

29 new functions & 2 gcc compilers + clang v7.1 & ARM binaries

• + other fun facts in thesis

408 binaries

Total

Beyond Constant-Time

21

Secret-erasure

22

Secret-erasure

23

• Crucial for cryptographic code
• Property of 2 executions
• Not always preserved by compilers

gcc –O2
Dead store elimination pass

removes memset call

Generalizing Binary-level RelSE

24

• Binary-level RelSE parametric in the leakage model
→ Symbolic leakage predicate instantiated according to leakage model

→ For IF properties restricting to pairs of traces following same path

• New leakage model + property for capturing secret-erasure
→ Leaks value of all store operations that are not overwritten
→ Forbids secret dependent control-flow

• Adaptation of Binsec/Rel to secret-erasure

Application: Secret-Erasure

25

• We analyze 17 scrubbing functions

• 5 versions of clang & 5 versions of gcc

• 4 optimization levels

̶ Dedicated secure scrubbing functions (e.g. memset_s) are secure
(but not always available)

̶ Volatile function pointers can introduce additional register spilling
that might break secret-erasure with gcc -O2 and gcc -O3

Easilly extensible with new compilers and new scrubbing functions

New framework to check secret-erasure

680 binaries - 1’20

Total

Conclusion

26

Conclusion

27

https://github.com/binsec/rel

• Dedicated optimizations for RelSE at binary-level

→ Sharing for scaling

• Binsec/Rel, binary-level tool for analyzing constant-time & secret-erasure

→ For bug-finding & bounded-verif

• Verification of crypto primitives at binary-level

→ new bugs introduced by compilers out-of reach of LLVM verification

https://github.com/binsec/rel

Haunted RelSE: detect Spectre vulnerabilities

28

PART 2

Spectre haunting our code

29

Spectre attacks (2018)

• Exploit speculative execution in processors

• Affect almost all processors

• Attackers can force mispeculations: transient executions

• Transient executions are reverted at architectural level

• But not the microarchitectural state (e.g. cache)

Idea. Force victim to encode secret data in cache during
transient execution & recover them with cache attacks

Spectre-PHT

30

if idx < size {

v = tab[idx]

leak(v)

}

Sequential execution

• Conditional bound check
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Spectre-PHT

Exploits conditional branch predictor

Spectre-PHT

31

if idx < size {

v = tab[idx]

leak(v)

}

Sequential execution

• Conditional bound check
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Transient Execution

• Conditional is misspeculated
• Out-of-bound array access

→ load secret data in v
• v is leaked to the cache

Spectre-PHT

Exploits conditional branch predictor

Spectre-STL

32

Sequential execution

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

Spectre-STL

33

Sequential execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

+

+

leak(p)

Spectre-STL

34

sequential execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

+ +

+

leak(s)leak(p)

Spectre-STL

35

sequential execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

v = load a

store a s

store a p

store b q

leak(v)

+ + +

+

leak(s)leak(p) leak(init_mem[a])

Constant-time verification & Spectre attacks

36

Execution time is not easy to determine

• Sequence of instructions executed

• Memory accesses (Cache attacks, 2005)

• Speculation (Spectre attacks, 2018)

Not easy to write constant-time programs
We need efficient automated verification tools that take
into account speculation mechanisms in processors.

Human

Compiler

Hardware

Multiple failure points

Detect Spectre attacks ?

• Counter-intuitive semantics

• Path explosion:

• Spectre-STL: all possible

load/store interleavings !

• Needs to hold at binary-level

37

Challenging !

Semantics Paths

Sequential semantics 14

Speculative semantics (Spectre-STL) 37M

Path explosion for Spectre-STL on Litmus tests (328 instr.)

Goal: New verification tools for Spectre

38

Goal. We need new verification tools to detect Spectre vulnerabilities !

Challenge. Model new transient behaviors avoiding path explosion

→ Verify Speculative Constant Time (SCT) property
→ Build on Relational Symbolic Execution (RelSE)

Proposal.

No efficient verification tools for Spectre

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM  -

SpecuSym [2] LLVM  -

FASS [3] Binary  -

Spectector [4] Binary  -

Pitchfork [5] Binary  

Legend







Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

LLVM analysis might

miss SCT violations 

39

No efficient verification tools for Spectre ?

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM  -

SpecuSym [2] LLVM  -

FASS [3] Binary  -

Spectector [4] Binary  -

Pitchfork [5] Binary  

Binsec/Haunted Binary  

Legend







Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

LLVM analysis might

miss SCT violations 

40

Contributions

Haunted RelSE optimization
• Model transient and sequential behaviors at the same time
• Formal proof: equivalence with explicit exploration [in the paper]

Binsec/Haunted, binary-level verification tool
• Experimental evaluation on real world crypto (donna, libsodium, OpenSSL)
• Efficient on real-wold crypto for Spectre-PHT →

• Efficient on small programs for Spectre-STL →

• Comparison with SoA: faster & more vulnerabilities found

New Spectre-STL violations
• Index-masking (countermeasure against Spectre-PHT) + proven mitigations
• Code introduced for Position-Independent-Code [in the paper]

41

Haunted RelSE for Spectre-PHT

42

Background: Symbolic Execution

4343

Symbolic execution. An illustration.

if c

then foo

else bar
c

foo bar

2 sequential paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Explicit RelSE for Spectre PHT

4444

Explicit RelSE.

Fork execution into 4 at conditionals:
• 2 sequential branches
• 2 transient branches (until max

speculation depth)

On sequential and transient branches:
• Verify no secret can leak.

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo foo bar bar

+ 2 extra transient paths

2 sequential paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

𝜋 ∧ 𝑐𝜋 ∧ ¬𝑐

(e.g. KLEESpectre)

Haunted RelSE for Spectre PHT

4545

Haunted RelSE.

Fork execution into 2 speculative paths:

• speculative = sequential ∨ transient
• After max spec. depth, add constraint

to invalidate transient path

→ can spare two paths at conditionals

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo bar

2 speculative paths𝜋

𝜋 ∧ (𝑐 ∨ ¬𝑐) 𝜋 ∧ (𝑐 ∨ ¬𝑐)

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Haunted RelSE for Spectre-STL

46

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

47

store a s

store a p

store b q

v = load a

v ↦ p

1 sequential path

where a ≠ b

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

48

Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

v ↦ p

v ↦ p v ↦ s

+ 3 extra transient paths
1 sequential path

where a ≠ b

Explicit RelSE.

At load instructions: fork execution
for each load/store interleaving.

→ Path explosion

(e.g. Pitchfork)
v ↦𝛼

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

49

Spectre-STL. Loads can speculatively bypass prior stores

v ↦ p

v ↦ p v ↦ s

v ↦𝛼

+ 3 extra transient paths
1 sequential path

Redundant case
Can be eliminated with

read-over-write

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

Explicit RelSE for Spectre-STL

50

Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

v ↦ ite 𝛽0 then 𝛼 else (ite 𝛽1 then s else p)

1 speculative path

Haunted RelSE.
• Cut redundant cases
• Encode remaining ones in 1 path

• symbolic ite
• free booleans 𝛽0, 𝛽1

𝛽0 = 𝑓𝑎𝑙𝑠𝑒
𝛽1 = 𝑓𝑎𝑙𝑠𝑒

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

Experimental evaluation

51

Binsec/Haunted.
Implementation of Haunted RelSE

https://github.com/binsec/haunted

Benchmark.

• Litmus tests (46 small test cases)

• Cryptographic primitives tea & donna

• More complex cryptographic primitives

• Libsodium secretbox

• OpenSSL ssl3-digest-record

• OpenSSL mee-cdc-decrypt

Experiments.

RQ1. Effective on real code ?

→ Spectre-PHT & Spectre-STL 

RQ2. Haunted vs. Explicit ?

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗

RQ3. Comparison against KLEESpectre & Pitchfork

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗

https://github.com/binsec/haunted

Weakness of index-masking countermeasure

52

Weakness of Spectre-PHT countermeasure

53

Index masking. Add branchless bound checks

Program vulnerable to Spectre-PHT

if (idx < size) { // size = 256

v = tab[idx]

leak(v)

}

Weakness of Spectre-PHT countermeasure

54

Index masking. Add branchless bound checks

Index masking countermeasure

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

Weakness of Spectre-PHT countermeasure

55

Index masking. Add branchless bound checks

Compiled version with gcc –O0 –m32Index masking countermeasure

• Masked index stored in memory
• Store may be bypassed with Spectre-STL !

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (load @idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)

Weakness of Spectre-PHT countermeasure

• Enable optimizations (depends on compiler choices)

• Explicitly put masked index in a register

56

Index masking. Add branchless bound checks

Compiled version with gcc –O0 –m32Index masking countermeasure

• Masked index stored in memory
• Store may be bypassed with Spectre-STL !

Verified mitigations:

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (load @idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)

Wrap-up: detection of Spectre

57

• Haunted RelSE optimization
• Model transient and sequential behaviors at the same time

• Significantly improves SoA methods

• Binsec/Haunted, binary-level verification tool

• Spectre-PHT: efficient on real world crypto →

• Spectre-STL: efficient on small programs→

• New Spectre-STL violations with index-masking and PIC

https://github.com/binsec/haunted

https://github.com/binsec/haunted_bench

https://github.com/binsec/haunted
https://github.com/binsec/haunted_bench

Conclusion

58

Conclusion

59

• Haunted RelSE optimization for
modeling speculative semantics

• Binsec/Haunted, binary-level tool to
detect Spectre-PHT & STL

• New Spectre-STL violations with
index masking and PIC

https://github.com/binsec/haunted
https://github.com/binsec/rel

• Dedicated optimizations for RelSE at
binary-level

• Binsec/Rel, binary-level tool for bug-
finding & bounded-verif. of CT

• Verif of crypto libraries at binary-level
+ new bugs introduced by compilers

https://github.com/binsec/haunted
https://github.com/binsec/rel

Follow-up ?

Extend framework to check property preservation by compilers

• Analysis of other countermeasures (lfence, speculative load
hardening)

• Spectre RSB/BTB + analysis of countermeasures

Exploitability

• Less conservative SCT definition: load ebp-4 cannot bypass store ebp-4

• Cache model

60

Backup

62

Position Independent Code & Spectre-STL

PIC: addess global variables = offset from global pointer

Global pointer: set up at the beginning of a function relatively to current location

63

get

)

eax = current location

load current location from stack

eax = global pointer

edx = global variable

current location pushed on stack at call

Position Independent Code & Spectre-STL

PIC: addess global variables = offset from global pointer

Global pointer: set up at the beginning of a function relatively to current location

64

get

current location pushed on stack at call

load bypasses prior store

)

eax = any value

load data from arbitrary @
… leak edx

