
Symbolic Binary-Level Code Analysis for Security

Application to the Detection of Microarchitectural Attacks

in Cryptographic Code

Supervised by:

- Sébastien Bardin, CEA List

- Tamara Rezk, INRIA

TEE talk October, 25th 2021

Lesly-Ann Daniel

CEA List and Université Côte d’Azur

Timing and Microarchitectural Attacks

Timing and microarchitectural attacks:
Execution time / microarchitectural state can leak
secret information manipulated by programs

First timing attack in 1996 by Paul Kocher:
full recovery of RSA encryption key

3 s

9 s
9 s

2

Protect software with Constant-Time programming

3

?
?

?

Constant-Time. Execution time / changes to microarchitectural
state are independent from secret input

Already used in many cryptographic implementations

if secret

then foo()

else bar()

What can influence exec. time/microarchitecture?

secret→

→ secret

Control Flow

Memory Accesses

if secret

then foo()

else bar()

What can influence exec. time/microarchitecture?

secret→

→ secret

x = buf[secret]

Cache

Control Flow

Memory Accesses

if secret

then foo()

else bar()

What can influence exec. time/microarchitecture?

secret→

→ secret secret

Cache

Control Flow

x = buf[secret]

Protect software with Constant-Time programming

7

?
?

?

Constant-Time. Control-flow and memory accesses are
independent from secret input

Control-flow
Memory accesses

Control-flow
Memory accesses

Protect software with Constant-Time programming

8

?
?

?

Constant-Time. Control-flow and memory accesses are
independent from secret input

Property relating 2 execution traces (2-hypersafety)

Control-flow
Memory accesses

Control-flow
Memory accesses

CT code is not easy to implement

9

clang-3.0 –O0

Compilers can break CT!

10

clang-3.0 –O3

Automated verification tools for
constant-time (and more) at binary-level

11

Goal

Automated program verification

12

Ideally we would like our verification tool to:
• Reject all insecure programs
• Accept all secure programs
• Always terminate
• Be fully automatic

Not possible:
Non trivial semantic properties
of programs are undecidable
Rice Theorem (1951)

}

Bug-Finding

Verification

Verification tool

Automated program verification

13

Ideally we would like our verification tool to:
• Reject all insecure programs
• Accept all secure programs up to given bound
• Always terminate
• Be fully automatic

Bug-Finding

Bounded-
Verification

Verification tool

Convenient to have both
because binary-level tools

are difficult to use!

Bounded Verification & Bug-Finding?
Try Symbolic Execution

• Leading formal method for bug-finding

• Scales well on binary code

• Finds real bugs + reports counterexamples

• Can also do bounded-verification

14

Program

Symbolic
Execution

Formula

Solver

15

Binsec/Rel:
Efficient constant-time verification at binary-level

+ Beyond constant-time (overview)

PART 1

Haunted RelSE: detect Spectre vulnerabilities

PART 2

Binsec/Rel:
Efficient constant-time verification at binary-level

16

PART 1

Challenges of CT analysis

17

→ Efficiently model pairs of executions → Binary-analysis

Compilation

Property of 2 executions Not necessarily preserved by
compilers

Reason explicitly about memoryStandard SE do not apply

Binary-level SERelSE
SE for pairs of traces with sharing

Challenges of CT analysis

18

→ Efficiently model pairs of executions → Binary-analysis

Compilation

Property of 2 executions Not necessarily preserved by
compilers

Reason explicitly about memoryStandard SE do not apply

Does not scale (whole memory is duplicated, no sharing)

RelSE
SE for pairs of traces with sharing

Binary-level SE

Contributions

19

BINSEC/REL

First efficient tool
for BV&BF of CT
at binary-level

+ formal proofs

New Tool

Dedicated optimizations for
RelSE at binary-level:

maximize sharing in memory
(x700 speedup)

Optimizations

From OpenSSL, BearSSL,
libsodium

296 verified binaries
3 new bugs introduced by

compilers from verified source
Out of reach of LLVM verification tools

Application: crypto verif.

Efficient Relational Symbolic Execution for Constant-Time at Binary-Level

https://github.com/binsec/rel

https://github.com/binsec/rel

RQ3: Preservation of CT by compilers

20
[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

Prior manual study on constant-time bugs introduced by compilers [1]

• We automate this study with Binsec/Rel

• We extend this study:

• gcc –O0 can introduce violations in programs

• clang backend passes introduce violations in programs
deemed secure by CT-verification tools for llvm

29 new functions & 2 gcc compilers + clang v7.1 & ARM binaries

• + other fun facts in thesis

408 binaries

Total

Beyond Constant-Time

21

Secret-erasure

22

Secret-erasure

23

• Crucial for cryptographic code
• Property of 2 executions
• Not always preserved by compilers

gcc –O2
Dead store elimination pass

removes memset call

Generalizing Binary-level RelSE

24

• Binary-level RelSE parametric in the leakage model
→ Symbolic leakage predicate instantiated according to leakage model

→ For IF properties restricting to pairs of traces following same path

• New leakage model + property for capturing secret-erasure
→ Leaks value of all store operations that are not overwritten
→ Forbids secret dependent control-flow

• Adaptation of Binsec/Rel to secret-erasure

Application: Secret-Erasure

25

• We analyze 17 scrubbing functions

• 5 versions of clang & 5 versions of gcc

• 4 optimization levels

̶ Dedicated secure scrubbing functions (e.g. memset_s) are secure
(but not always available)

̶ Volatile function pointers can introduce additional register spilling
that might break secret-erasure with gcc -O2 and gcc -O3

Easilly extensible with new compilers and new scrubbing functions

New framework to check secret-erasure

680 binaries - 1’20

Total

Conclusion

26

Conclusion

27

https://github.com/binsec/rel

• Dedicated optimizations for RelSE at binary-level

→ Sharing for scaling

• Binsec/Rel, binary-level tool for analyzing constant-time & secret-erasure

→ For bug-finding & bounded-verif

• Verification of crypto primitives at binary-level

→ new bugs introduced by compilers out-of reach of LLVM verification

https://github.com/binsec/rel

Haunted RelSE: detect Spectre vulnerabilities

28

PART 2

Spectre haunting our code

29

Spectre attacks (2018)

• Exploit speculative execution in processors

• Affect almost all processors

• Attackers can force mispeculations: transient executions

• Transient executions are reverted at architectural level

• But not the microarchitectural state (e.g. cache)

Idea. Force victim to encode secret data in cache during
transient execution & recover them with cache attacks

Spectre-PHT

30

if idx < size {

v = tab[idx]

leak(v)

}

Sequential execution

• Conditional bound check
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Spectre-PHT

Exploits conditional branch predictor

Spectre-PHT

31

if idx < size {

v = tab[idx]

leak(v)

}

Sequential execution

• Conditional bound check
ensures idx is in bounds

• v contains public data

• idx is attacker controlled
• content of tab is public
• leak(v) encodes v to cache

Transient Execution

• Conditional is misspeculated
• Out-of-bound array access

→ load secret data in v
• v is leaked to the cache

Spectre-PHT

Exploits conditional branch predictor

Spectre-STL

32

Sequential execution

leak(p)

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

Spectre-STL

33

Sequential execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

+

+

leak(p)

Spectre-STL

34

sequential execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

+ +

+

leak(s)leak(p)

Spectre-STL

35

sequential execution

leak(p)

Transient Executions

Spectre-STL: Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

leak(v)

• where s is secret, p and q are public
• where a ≠ b

• leak(v) encodes v to cache

store a s

store a p

v = load a

store b q

leak(v)

store a s

v = load a

store a p

store b q

leak(v)

v = load a

store a s

store a p

store b q

leak(v)

+ + +

+

leak(s)leak(p) leak(init_mem[a])

Constant-time verification & Spectre attacks

36

Execution time is not easy to determine

• Sequence of instructions executed

• Memory accesses (Cache attacks, 2005)

• Speculation (Spectre attacks, 2018)

Not easy to write constant-time programs
We need efficient automated verification tools that take
into account speculation mechanisms in processors.

Human

Compiler

Hardware

Multiple failure points

Detect Spectre attacks ?

• Counter-intuitive semantics

• Path explosion:

• Spectre-STL: all possible

load/store interleavings !

• Needs to hold at binary-level

37

Challenging !

Semantics Paths

Sequential semantics 14

Speculative semantics (Spectre-STL) 37M

Path explosion for Spectre-STL on Litmus tests (328 instr.)

Goal: New verification tools for Spectre

38

Goal. We need new verification tools to detect Spectre vulnerabilities !

Challenge. Model new transient behaviors avoiding path explosion

→ Verify Speculative Constant Time (SCT) property
→ Build on Relational Symbolic Execution (RelSE)

Proposal.

No efficient verification tools for Spectre

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM -

SpecuSym [2] LLVM -

FASS [3] Binary -

Spectector [4] Binary -

Pitchfork [5] Binary

Legend

Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

LLVM analysis might

miss SCT violations

39

No efficient verification tools for Spectre ?

Target Spectre-PHT Spectre-STL

KLEESpectre [1] LLVM -

SpecuSym [2] LLVM -

FASS [3] Binary -

Spectector [4] Binary -

Pitchfork [5] Binary

Binsec/Haunted Binary

Legend

Good on small programs
Limited perfs. On crypto

Good perfs. on crypto

Limited to small programs

[1] G. Wang, et al “KLEESpectre: Detecting Information Leakage through Speculative Cache Atttacks via Symbolic Execution”, ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, 2020.
[2] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo, “SpecuSym: Speculative Symbolic Execution for Cache Timing Leak Detection”, in ICSE 2020 Technical Papers, 2020.
[3] K. Cheang, C. Rasmussen, S. A. Seshia, and P. Subramanyan, “A Formal Approach to Secure Speculation”, in CSF, 2019.
[4] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez, “Spectector: Principled Detection of Speculative Information Flows”, in S&P, 2020
[5] S. Cauligi, C. Disselkoen, K. von Gleissenthall, D. M. Tullsen, D. Stefan, T. Rezk, and G. Barthe, “Constant-Time Foundations for the New Spectre Era”, in PLDI, 2020.

LLVM analysis might

miss SCT violations

40

Contributions

Haunted RelSE optimization
• Model transient and sequential behaviors at the same time
• Formal proof: equivalence with explicit exploration [in the paper]

Binsec/Haunted, binary-level verification tool
• Experimental evaluation on real world crypto (donna, libsodium, OpenSSL)
• Efficient on real-wold crypto for Spectre-PHT →

• Efficient on small programs for Spectre-STL →

• Comparison with SoA: faster & more vulnerabilities found

New Spectre-STL violations
• Index-masking (countermeasure against Spectre-PHT) + proven mitigations
• Code introduced for Position-Independent-Code [in the paper]

41

Haunted RelSE for Spectre-PHT

42

Background: Symbolic Execution

4343

Symbolic execution. An illustration.

if c

then foo

else bar
c

foo bar

2 sequential paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Explicit RelSE for Spectre PHT

4444

Explicit RelSE.

Fork execution into 4 at conditionals:
• 2 sequential branches
• 2 transient branches (until max

speculation depth)

On sequential and transient branches:
• Verify no secret can leak.

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo foo bar bar

+ 2 extra transient paths

2 sequential paths𝜋

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

𝜋 ∧ 𝑐𝜋 ∧ ¬𝑐

(e.g. KLEESpectre)

Haunted RelSE for Spectre PHT

4545

Haunted RelSE.

Fork execution into 2 speculative paths:

• speculative = sequential ∨ transient
• After max spec. depth, add constraint

to invalidate transient path

→ can spare two paths at conditionals

Spectre-PHT. Conditional branches can be executed speculatively

if c

then foo

else bar
c

foo bar

2 speculative paths𝜋

𝜋 ∧ (𝑐 ∨ ¬𝑐) 𝜋 ∧ (𝑐 ∨ ¬𝑐)

𝜋 ∧ ¬𝑐𝜋 ∧ 𝑐

Haunted RelSE for Spectre-STL

46

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

47

store a s

store a p

store b q

v = load a

v ↦ p

1 sequential path

where a ≠ b

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

48

Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

v ↦ p

v ↦ p v ↦ s

+ 3 extra transient paths
1 sequential path

where a ≠ b

Explicit RelSE.

At load instructions: fork execution
for each load/store interleaving.

→ Path explosion

(e.g. Pitchfork)
v ↦𝛼

store a s

store a p

store b q

v = load a

Explicit RelSE for Spectre-STL

49

Spectre-STL. Loads can speculatively bypass prior stores

v ↦ p

v ↦ p v ↦ s

v ↦𝛼

+ 3 extra transient paths
1 sequential path

Redundant case
Can be eliminated with

read-over-write

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

Explicit RelSE for Spectre-STL

50

Spectre-STL. Loads can speculatively bypass prior stores

store a s

store a p

store b q

v = load a

v ↦ ite 𝛽0 then 𝛼 else (ite 𝛽1 then s else p)

1 speculative path

Haunted RelSE.
• Cut redundant cases
• Encode remaining ones in 1 path

• symbolic ite
• free booleans 𝛽0, 𝛽1

𝛽0 = 𝑓𝑎𝑙𝑠𝑒
𝛽1 = 𝑓𝑎𝑙𝑠𝑒

store a s

store a p

store b q

v = load a

store a s

store a p

v = load a

store b q

store a s

v = load a

store a p

store b q

v = load a

store a s

store a p

store b q

where a ≠ b

Experimental evaluation

51

Binsec/Haunted.
Implementation of Haunted RelSE

https://github.com/binsec/haunted

Benchmark.

• Litmus tests (46 small test cases)

• Cryptographic primitives tea & donna

• More complex cryptographic primitives

• Libsodium secretbox

• OpenSSL ssl3-digest-record

• OpenSSL mee-cdc-decrypt

Experiments.

RQ1. Effective on real code ?

→ Spectre-PHT & Spectre-STL

RQ2. Haunted vs. Explicit ?

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗

RQ3. Comparison against KLEESpectre & Pitchfork

→ Spectre-PHT: ≈ or ↗ & Spectre-STL: always ↗

https://github.com/binsec/haunted

Weakness of index-masking countermeasure

52

Weakness of Spectre-PHT countermeasure

53

Index masking. Add branchless bound checks

Program vulnerable to Spectre-PHT

if (idx < size) { // size = 256

v = tab[idx]

leak(v)

}

Weakness of Spectre-PHT countermeasure

54

Index masking. Add branchless bound checks

Index masking countermeasure

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

Weakness of Spectre-PHT countermeasure

55

Index masking. Add branchless bound checks

Compiled version with gcc –O0 –m32Index masking countermeasure

• Masked index stored in memory
• Store may be bypassed with Spectre-STL !

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (load @idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)

Weakness of Spectre-PHT countermeasure

• Enable optimizations (depends on compiler choices)

• Explicitly put masked index in a register

56

Index masking. Add branchless bound checks

Compiled version with gcc –O0 –m32Index masking countermeasure

• Masked index stored in memory
• Store may be bypassed with Spectre-STL !

Verified mitigations:

if (idx < size) { // size = 256

idx = idx & (0xff)

v = tab[idx]

leak(v)

}

store @idx (load @idx & 0xff)

eax = load @idx

al = [@tab + eax]

leak (al)

Wrap-up: detection of Spectre

57

• Haunted RelSE optimization
• Model transient and sequential behaviors at the same time

• Significantly improves SoA methods

• Binsec/Haunted, binary-level verification tool

• Spectre-PHT: efficient on real world crypto →

• Spectre-STL: efficient on small programs→

• New Spectre-STL violations with index-masking and PIC

https://github.com/binsec/haunted

https://github.com/binsec/haunted_bench

https://github.com/binsec/haunted
https://github.com/binsec/haunted_bench

Conclusion

58

Conclusion

59

• Haunted RelSE optimization for
modeling speculative semantics

• Binsec/Haunted, binary-level tool to
detect Spectre-PHT & STL

• New Spectre-STL violations with
index masking and PIC

https://github.com/binsec/haunted
https://github.com/binsec/rel

• Dedicated optimizations for RelSE at
binary-level

• Binsec/Rel, binary-level tool for bug-
finding & bounded-verif. of CT

• Verif of crypto libraries at binary-level
+ new bugs introduced by compilers

https://github.com/binsec/haunted
https://github.com/binsec/rel

Follow-up ?

Extend framework to check property preservation by compilers

• Analysis of other countermeasures (lfence, speculative load
hardening)

• Spectre RSB/BTB + analysis of countermeasures

Exploitability

• Less conservative SCT definition: load ebp-4 cannot bypass store ebp-4

• Cache model

60

Backup

62

Position Independent Code & Spectre-STL

PIC: addess global variables = offset from global pointer

Global pointer: set up at the beginning of a function relatively to current location

63

get

)

eax = current location

load current location from stack

eax = global pointer

edx = global variable

current location pushed on stack at call

Position Independent Code & Spectre-STL

PIC: addess global variables = offset from global pointer

Global pointer: set up at the beginning of a function relatively to current location

64

get

current location pushed on stack at call

load bypasses prior store

)

eax = any value

load data from arbitrary @
… leak edx

